mirror of https://github.com/apache/lucene.git
simple cleanups to vector code (#12680)
* simple cleanups to vector code * cleanup cosine too, no perf impact
This commit is contained in:
parent
dbda33fb2f
commit
db746bdbc3
|
@ -16,12 +16,15 @@
|
|||
*/
|
||||
package org.apache.lucene.internal.vectorization;
|
||||
|
||||
import static jdk.incubator.vector.VectorOperators.ADD;
|
||||
import static jdk.incubator.vector.VectorOperators.B2S;
|
||||
import static jdk.incubator.vector.VectorOperators.S2I;
|
||||
|
||||
import jdk.incubator.vector.ByteVector;
|
||||
import jdk.incubator.vector.FloatVector;
|
||||
import jdk.incubator.vector.IntVector;
|
||||
import jdk.incubator.vector.ShortVector;
|
||||
import jdk.incubator.vector.Vector;
|
||||
import jdk.incubator.vector.VectorOperators;
|
||||
import jdk.incubator.vector.VectorShape;
|
||||
import jdk.incubator.vector.VectorSpecies;
|
||||
|
||||
|
@ -29,21 +32,25 @@ final class PanamaVectorUtilSupport implements VectorUtilSupport {
|
|||
|
||||
private static final int INT_SPECIES_PREF_BIT_SIZE = IntVector.SPECIES_PREFERRED.vectorBitSize();
|
||||
|
||||
private static final VectorSpecies<Float> PREF_FLOAT_SPECIES = FloatVector.SPECIES_PREFERRED;
|
||||
private static final VectorSpecies<Byte> PREF_BYTE_SPECIES;
|
||||
private static final VectorSpecies<Short> PREF_SHORT_SPECIES;
|
||||
// we always use the platform's maximum floating point vector size
|
||||
private static final VectorSpecies<Float> FLOAT_SPECIES = FloatVector.SPECIES_PREFERRED;
|
||||
|
||||
// for integer methods, it is more complicated due to conversions
|
||||
private static final VectorSpecies<Byte> BYTE_SPECIES;
|
||||
private static final VectorSpecies<Short> SHORT_SPECIES;
|
||||
|
||||
// compute BYTE/SHORT sizes relative to preferred integer vector size
|
||||
static {
|
||||
if (INT_SPECIES_PREF_BIT_SIZE >= 256) {
|
||||
PREF_BYTE_SPECIES =
|
||||
BYTE_SPECIES =
|
||||
ByteVector.SPECIES_MAX.withShape(
|
||||
VectorShape.forBitSize(IntVector.SPECIES_PREFERRED.vectorBitSize() >> 2));
|
||||
PREF_SHORT_SPECIES =
|
||||
SHORT_SPECIES =
|
||||
ShortVector.SPECIES_MAX.withShape(
|
||||
VectorShape.forBitSize(IntVector.SPECIES_PREFERRED.vectorBitSize() >> 1));
|
||||
} else {
|
||||
PREF_BYTE_SPECIES = null;
|
||||
PREF_SHORT_SPECIES = null;
|
||||
BYTE_SPECIES = null;
|
||||
SHORT_SPECIES = null;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -57,51 +64,61 @@ final class PanamaVectorUtilSupport implements VectorUtilSupport {
|
|||
public float dotProduct(float[] a, float[] b) {
|
||||
int i = 0;
|
||||
float res = 0;
|
||||
|
||||
// if the array size is large (> 2x platform vector size), its worth the overhead to vectorize
|
||||
if (a.length > 2 * PREF_FLOAT_SPECIES.length()) {
|
||||
if (a.length > 2 * FLOAT_SPECIES.length()) {
|
||||
i += FLOAT_SPECIES.loopBound(a.length);
|
||||
res += dotProductBody(a, b, i);
|
||||
}
|
||||
|
||||
// scalar tail
|
||||
for (; i < a.length; i++) {
|
||||
res += b[i] * a[i];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/** vectorized float dot product body */
|
||||
private float dotProductBody(float[] a, float[] b, int limit) {
|
||||
int i = 0;
|
||||
// vector loop is unrolled 4x (4 accumulators in parallel)
|
||||
FloatVector acc1 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector acc2 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector acc3 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector acc4 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
int upperBound = PREF_FLOAT_SPECIES.loopBound(a.length - 3 * PREF_FLOAT_SPECIES.length());
|
||||
for (; i < upperBound; i += 4 * PREF_FLOAT_SPECIES.length()) {
|
||||
FloatVector va = FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i);
|
||||
// we don't know how many the cpu can do at once, some can do 2, some 4
|
||||
FloatVector acc1 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector acc2 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector acc3 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector acc4 = FloatVector.zero(FLOAT_SPECIES);
|
||||
int unrolledLimit = limit - 3 * FLOAT_SPECIES.length();
|
||||
for (; i < unrolledLimit; i += 4 * FLOAT_SPECIES.length()) {
|
||||
// one
|
||||
FloatVector va = FloatVector.fromArray(FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(FLOAT_SPECIES, b, i);
|
||||
acc1 = acc1.add(va.mul(vb));
|
||||
FloatVector vc =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i + PREF_FLOAT_SPECIES.length());
|
||||
FloatVector vd =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i + PREF_FLOAT_SPECIES.length());
|
||||
|
||||
// two
|
||||
FloatVector vc = FloatVector.fromArray(FLOAT_SPECIES, a, i + FLOAT_SPECIES.length());
|
||||
FloatVector vd = FloatVector.fromArray(FLOAT_SPECIES, b, i + FLOAT_SPECIES.length());
|
||||
acc2 = acc2.add(vc.mul(vd));
|
||||
FloatVector ve =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i + 2 * PREF_FLOAT_SPECIES.length());
|
||||
FloatVector vf =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i + 2 * PREF_FLOAT_SPECIES.length());
|
||||
|
||||
// three
|
||||
FloatVector ve = FloatVector.fromArray(FLOAT_SPECIES, a, i + 2 * FLOAT_SPECIES.length());
|
||||
FloatVector vf = FloatVector.fromArray(FLOAT_SPECIES, b, i + 2 * FLOAT_SPECIES.length());
|
||||
acc3 = acc3.add(ve.mul(vf));
|
||||
FloatVector vg =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i + 3 * PREF_FLOAT_SPECIES.length());
|
||||
FloatVector vh =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i + 3 * PREF_FLOAT_SPECIES.length());
|
||||
|
||||
// four
|
||||
FloatVector vg = FloatVector.fromArray(FLOAT_SPECIES, a, i + 3 * FLOAT_SPECIES.length());
|
||||
FloatVector vh = FloatVector.fromArray(FLOAT_SPECIES, b, i + 3 * FLOAT_SPECIES.length());
|
||||
acc4 = acc4.add(vg.mul(vh));
|
||||
}
|
||||
// vector tail: less scalar computations for unaligned sizes, esp with big vector sizes
|
||||
upperBound = PREF_FLOAT_SPECIES.loopBound(a.length);
|
||||
for (; i < upperBound; i += PREF_FLOAT_SPECIES.length()) {
|
||||
FloatVector va = FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i);
|
||||
for (; i < limit; i += FLOAT_SPECIES.length()) {
|
||||
FloatVector va = FloatVector.fromArray(FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(FLOAT_SPECIES, b, i);
|
||||
acc1 = acc1.add(va.mul(vb));
|
||||
}
|
||||
// reduce
|
||||
FloatVector res1 = acc1.add(acc2);
|
||||
FloatVector res2 = acc3.add(acc4);
|
||||
res += res1.add(res2).reduceLanes(VectorOperators.ADD);
|
||||
}
|
||||
|
||||
for (; i < a.length; i++) {
|
||||
res += b[i] * a[i];
|
||||
}
|
||||
return res;
|
||||
return res1.add(res2).reduceLanes(ADD);
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -110,55 +127,78 @@ final class PanamaVectorUtilSupport implements VectorUtilSupport {
|
|||
float sum = 0;
|
||||
float norm1 = 0;
|
||||
float norm2 = 0;
|
||||
|
||||
// if the array size is large (> 2x platform vector size), its worth the overhead to vectorize
|
||||
if (a.length > 2 * PREF_FLOAT_SPECIES.length()) {
|
||||
if (a.length > 2 * FLOAT_SPECIES.length()) {
|
||||
i += FLOAT_SPECIES.loopBound(a.length);
|
||||
float[] ret = cosineBody(a, b, i);
|
||||
sum += ret[0];
|
||||
norm1 += ret[1];
|
||||
norm2 += ret[2];
|
||||
}
|
||||
|
||||
// scalar tail
|
||||
for (; i < a.length; i++) {
|
||||
float elem1 = a[i];
|
||||
float elem2 = b[i];
|
||||
sum += elem1 * elem2;
|
||||
norm1 += elem1 * elem1;
|
||||
norm2 += elem2 * elem2;
|
||||
}
|
||||
return (float) (sum / Math.sqrt((double) norm1 * (double) norm2));
|
||||
}
|
||||
|
||||
/** vectorized cosine body */
|
||||
private float[] cosineBody(float[] a, float[] b, int limit) {
|
||||
int i = 0;
|
||||
// vector loop is unrolled 4x (4 accumulators in parallel)
|
||||
FloatVector sum1 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector sum2 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector sum3 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector sum4 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector norm1_1 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector norm1_2 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector norm1_3 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector norm1_4 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector norm2_1 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector norm2_2 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector norm2_3 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector norm2_4 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
int upperBound = PREF_FLOAT_SPECIES.loopBound(a.length - 3 * PREF_FLOAT_SPECIES.length());
|
||||
for (; i < upperBound; i += 4 * PREF_FLOAT_SPECIES.length()) {
|
||||
FloatVector va = FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i);
|
||||
// we don't know how many the cpu can do at once, some can do 2, some 4
|
||||
FloatVector sum1 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector sum2 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector sum3 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector sum4 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector norm1_1 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector norm1_2 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector norm1_3 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector norm1_4 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector norm2_1 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector norm2_2 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector norm2_3 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector norm2_4 = FloatVector.zero(FLOAT_SPECIES);
|
||||
int unrolledLimit = limit - 3 * FLOAT_SPECIES.length();
|
||||
for (; i < unrolledLimit; i += 4 * FLOAT_SPECIES.length()) {
|
||||
// one
|
||||
FloatVector va = FloatVector.fromArray(FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(FLOAT_SPECIES, b, i);
|
||||
sum1 = sum1.add(va.mul(vb));
|
||||
norm1_1 = norm1_1.add(va.mul(va));
|
||||
norm2_1 = norm2_1.add(vb.mul(vb));
|
||||
FloatVector vc =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i + PREF_FLOAT_SPECIES.length());
|
||||
FloatVector vd =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i + PREF_FLOAT_SPECIES.length());
|
||||
|
||||
// two
|
||||
FloatVector vc = FloatVector.fromArray(FLOAT_SPECIES, a, i + FLOAT_SPECIES.length());
|
||||
FloatVector vd = FloatVector.fromArray(FLOAT_SPECIES, b, i + FLOAT_SPECIES.length());
|
||||
sum2 = sum2.add(vc.mul(vd));
|
||||
norm1_2 = norm1_2.add(vc.mul(vc));
|
||||
norm2_2 = norm2_2.add(vd.mul(vd));
|
||||
FloatVector ve =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i + 2 * PREF_FLOAT_SPECIES.length());
|
||||
FloatVector vf =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i + 2 * PREF_FLOAT_SPECIES.length());
|
||||
|
||||
// three
|
||||
FloatVector ve = FloatVector.fromArray(FLOAT_SPECIES, a, i + 2 * FLOAT_SPECIES.length());
|
||||
FloatVector vf = FloatVector.fromArray(FLOAT_SPECIES, b, i + 2 * FLOAT_SPECIES.length());
|
||||
sum3 = sum3.add(ve.mul(vf));
|
||||
norm1_3 = norm1_3.add(ve.mul(ve));
|
||||
norm2_3 = norm2_3.add(vf.mul(vf));
|
||||
FloatVector vg =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i + 3 * PREF_FLOAT_SPECIES.length());
|
||||
FloatVector vh =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i + 3 * PREF_FLOAT_SPECIES.length());
|
||||
|
||||
// four
|
||||
FloatVector vg = FloatVector.fromArray(FLOAT_SPECIES, a, i + 3 * FLOAT_SPECIES.length());
|
||||
FloatVector vh = FloatVector.fromArray(FLOAT_SPECIES, b, i + 3 * FLOAT_SPECIES.length());
|
||||
sum4 = sum4.add(vg.mul(vh));
|
||||
norm1_4 = norm1_4.add(vg.mul(vg));
|
||||
norm2_4 = norm2_4.add(vh.mul(vh));
|
||||
}
|
||||
// vector tail: less scalar computations for unaligned sizes, esp with big vector sizes
|
||||
upperBound = PREF_FLOAT_SPECIES.loopBound(a.length);
|
||||
for (; i < upperBound; i += PREF_FLOAT_SPECIES.length()) {
|
||||
FloatVector va = FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i);
|
||||
for (; i < limit; i += FLOAT_SPECIES.length()) {
|
||||
FloatVector va = FloatVector.fromArray(FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(FLOAT_SPECIES, b, i);
|
||||
sum1 = sum1.add(va.mul(vb));
|
||||
norm1_1 = norm1_1.add(va.mul(va));
|
||||
norm2_1 = norm2_1.add(vb.mul(vb));
|
||||
|
@ -170,71 +210,25 @@ final class PanamaVectorUtilSupport implements VectorUtilSupport {
|
|||
FloatVector norm1res2 = norm1_3.add(norm1_4);
|
||||
FloatVector norm2res1 = norm2_1.add(norm2_2);
|
||||
FloatVector norm2res2 = norm2_3.add(norm2_4);
|
||||
sum += sumres1.add(sumres2).reduceLanes(VectorOperators.ADD);
|
||||
norm1 += norm1res1.add(norm1res2).reduceLanes(VectorOperators.ADD);
|
||||
norm2 += norm2res1.add(norm2res2).reduceLanes(VectorOperators.ADD);
|
||||
}
|
||||
|
||||
for (; i < a.length; i++) {
|
||||
float elem1 = a[i];
|
||||
float elem2 = b[i];
|
||||
sum += elem1 * elem2;
|
||||
norm1 += elem1 * elem1;
|
||||
norm2 += elem2 * elem2;
|
||||
}
|
||||
return (float) (sum / Math.sqrt((double) norm1 * (double) norm2));
|
||||
return new float[] {
|
||||
sumres1.add(sumres2).reduceLanes(ADD),
|
||||
norm1res1.add(norm1res2).reduceLanes(ADD),
|
||||
norm2res1.add(norm2res2).reduceLanes(ADD)
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public float squareDistance(float[] a, float[] b) {
|
||||
int i = 0;
|
||||
float res = 0;
|
||||
|
||||
// if the array size is large (> 2x platform vector size), its worth the overhead to vectorize
|
||||
if (a.length > 2 * PREF_FLOAT_SPECIES.length()) {
|
||||
// vector loop is unrolled 4x (4 accumulators in parallel)
|
||||
FloatVector acc1 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector acc2 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector acc3 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
FloatVector acc4 = FloatVector.zero(PREF_FLOAT_SPECIES);
|
||||
int upperBound = PREF_FLOAT_SPECIES.loopBound(a.length - 3 * PREF_FLOAT_SPECIES.length());
|
||||
for (; i < upperBound; i += 4 * PREF_FLOAT_SPECIES.length()) {
|
||||
FloatVector va = FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i);
|
||||
FloatVector diff1 = va.sub(vb);
|
||||
acc1 = acc1.add(diff1.mul(diff1));
|
||||
FloatVector vc =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i + PREF_FLOAT_SPECIES.length());
|
||||
FloatVector vd =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i + PREF_FLOAT_SPECIES.length());
|
||||
FloatVector diff2 = vc.sub(vd);
|
||||
acc2 = acc2.add(diff2.mul(diff2));
|
||||
FloatVector ve =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i + 2 * PREF_FLOAT_SPECIES.length());
|
||||
FloatVector vf =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i + 2 * PREF_FLOAT_SPECIES.length());
|
||||
FloatVector diff3 = ve.sub(vf);
|
||||
acc3 = acc3.add(diff3.mul(diff3));
|
||||
FloatVector vg =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i + 3 * PREF_FLOAT_SPECIES.length());
|
||||
FloatVector vh =
|
||||
FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i + 3 * PREF_FLOAT_SPECIES.length());
|
||||
FloatVector diff4 = vg.sub(vh);
|
||||
acc4 = acc4.add(diff4.mul(diff4));
|
||||
}
|
||||
// vector tail: less scalar computations for unaligned sizes, esp with big vector sizes
|
||||
upperBound = PREF_FLOAT_SPECIES.loopBound(a.length);
|
||||
for (; i < upperBound; i += PREF_FLOAT_SPECIES.length()) {
|
||||
FloatVector va = FloatVector.fromArray(PREF_FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(PREF_FLOAT_SPECIES, b, i);
|
||||
FloatVector diff = va.sub(vb);
|
||||
acc1 = acc1.add(diff.mul(diff));
|
||||
}
|
||||
// reduce
|
||||
FloatVector res1 = acc1.add(acc2);
|
||||
FloatVector res2 = acc3.add(acc4);
|
||||
res += res1.add(res2).reduceLanes(VectorOperators.ADD);
|
||||
if (a.length > 2 * FLOAT_SPECIES.length()) {
|
||||
i += FLOAT_SPECIES.loopBound(a.length);
|
||||
res += squareDistanceBody(a, b, i);
|
||||
}
|
||||
|
||||
// scalar tail
|
||||
for (; i < a.length; i++) {
|
||||
float diff = a[i] - b[i];
|
||||
res += diff * diff;
|
||||
|
@ -242,138 +236,158 @@ final class PanamaVectorUtilSupport implements VectorUtilSupport {
|
|||
return res;
|
||||
}
|
||||
|
||||
/** vectorized square distance body */
|
||||
private float squareDistanceBody(float[] a, float[] b, int limit) {
|
||||
int i = 0;
|
||||
// vector loop is unrolled 4x (4 accumulators in parallel)
|
||||
// we don't know how many the cpu can do at once, some can do 2, some 4
|
||||
FloatVector acc1 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector acc2 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector acc3 = FloatVector.zero(FLOAT_SPECIES);
|
||||
FloatVector acc4 = FloatVector.zero(FLOAT_SPECIES);
|
||||
int unrolledLimit = limit - 3 * FLOAT_SPECIES.length();
|
||||
for (; i < unrolledLimit; i += 4 * FLOAT_SPECIES.length()) {
|
||||
// one
|
||||
FloatVector va = FloatVector.fromArray(FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(FLOAT_SPECIES, b, i);
|
||||
FloatVector diff1 = va.sub(vb);
|
||||
acc1 = acc1.add(diff1.mul(diff1));
|
||||
|
||||
// two
|
||||
FloatVector vc = FloatVector.fromArray(FLOAT_SPECIES, a, i + FLOAT_SPECIES.length());
|
||||
FloatVector vd = FloatVector.fromArray(FLOAT_SPECIES, b, i + FLOAT_SPECIES.length());
|
||||
FloatVector diff2 = vc.sub(vd);
|
||||
acc2 = acc2.add(diff2.mul(diff2));
|
||||
|
||||
// three
|
||||
FloatVector ve = FloatVector.fromArray(FLOAT_SPECIES, a, i + 2 * FLOAT_SPECIES.length());
|
||||
FloatVector vf = FloatVector.fromArray(FLOAT_SPECIES, b, i + 2 * FLOAT_SPECIES.length());
|
||||
FloatVector diff3 = ve.sub(vf);
|
||||
acc3 = acc3.add(diff3.mul(diff3));
|
||||
|
||||
// four
|
||||
FloatVector vg = FloatVector.fromArray(FLOAT_SPECIES, a, i + 3 * FLOAT_SPECIES.length());
|
||||
FloatVector vh = FloatVector.fromArray(FLOAT_SPECIES, b, i + 3 * FLOAT_SPECIES.length());
|
||||
FloatVector diff4 = vg.sub(vh);
|
||||
acc4 = acc4.add(diff4.mul(diff4));
|
||||
}
|
||||
// vector tail: less scalar computations for unaligned sizes, esp with big vector sizes
|
||||
for (; i < limit; i += FLOAT_SPECIES.length()) {
|
||||
FloatVector va = FloatVector.fromArray(FLOAT_SPECIES, a, i);
|
||||
FloatVector vb = FloatVector.fromArray(FLOAT_SPECIES, b, i);
|
||||
FloatVector diff = va.sub(vb);
|
||||
acc1 = acc1.add(diff.mul(diff));
|
||||
}
|
||||
// reduce
|
||||
FloatVector res1 = acc1.add(acc2);
|
||||
FloatVector res2 = acc3.add(acc4);
|
||||
return res1.add(res2).reduceLanes(ADD);
|
||||
}
|
||||
|
||||
// Binary functions, these all follow a general pattern like this:
|
||||
//
|
||||
// short intermediate = a * b;
|
||||
// int accumulator = accumulator + intermediate;
|
||||
// int accumulator = (int)accumulator + (int)intermediate;
|
||||
//
|
||||
// 256 or 512 bit vectors can process 64 or 128 bits at a time, respectively
|
||||
// intermediate results use 128 or 256 bit vectors, respectively
|
||||
// final accumulator uses 256 or 512 bit vectors, respectively
|
||||
//
|
||||
// We also support 128 bit vectors, using two 128 bit accumulators.
|
||||
// We also support 128 bit vectors, going 32 bits at a time.
|
||||
// This is slower but still faster than not vectorizing at all.
|
||||
|
||||
@Override
|
||||
public int dotProduct(byte[] a, byte[] b) {
|
||||
int i = 0;
|
||||
int res = 0;
|
||||
|
||||
// only vectorize if we'll at least enter the loop a single time, and we have at least 128-bit
|
||||
// vectors (256-bit on intel to dodge performance landmines)
|
||||
if (a.length >= 16 && useIntegerVectors) {
|
||||
// compute vectorized dot product consistent with VPDPBUSD instruction
|
||||
if (INT_SPECIES_PREF_BIT_SIZE >= 256) {
|
||||
// optimized 256/512 bit implementation, processes 8/16 bytes at a time
|
||||
int upperBound = PREF_BYTE_SPECIES.loopBound(a.length);
|
||||
IntVector acc = IntVector.zero(IntVector.SPECIES_PREFERRED);
|
||||
for (; i < upperBound; i += PREF_BYTE_SPECIES.length()) {
|
||||
ByteVector va8 = ByteVector.fromArray(PREF_BYTE_SPECIES, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(PREF_BYTE_SPECIES, b, i);
|
||||
Vector<Short> va16 = va8.convertShape(VectorOperators.B2S, PREF_SHORT_SPECIES, 0);
|
||||
Vector<Short> vb16 = vb8.convertShape(VectorOperators.B2S, PREF_SHORT_SPECIES, 0);
|
||||
Vector<Short> prod16 = va16.mul(vb16);
|
||||
Vector<Integer> prod32 =
|
||||
prod16.convertShape(VectorOperators.S2I, IntVector.SPECIES_PREFERRED, 0);
|
||||
acc = acc.add(prod32);
|
||||
}
|
||||
// reduce
|
||||
res += acc.reduceLanes(VectorOperators.ADD);
|
||||
i += BYTE_SPECIES.loopBound(a.length);
|
||||
res += dotProductBody256(a, b, i);
|
||||
} else {
|
||||
// 128-bit impl, which is tricky since we don't have SPECIES_32, it does "overlapping read"
|
||||
int upperBound = ByteVector.SPECIES_64.loopBound(a.length - ByteVector.SPECIES_64.length());
|
||||
IntVector acc = IntVector.zero(IntVector.SPECIES_128);
|
||||
// 4 bytes at a time
|
||||
for (; i < upperBound; i += ByteVector.SPECIES_64.length() >> 1) {
|
||||
// load 8 bytes
|
||||
ByteVector va8 = ByteVector.fromArray(ByteVector.SPECIES_64, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(ByteVector.SPECIES_64, b, i);
|
||||
|
||||
// process first "half" only
|
||||
Vector<Short> va16 = va8.convert(VectorOperators.B2S, 0);
|
||||
Vector<Short> vb16 = vb8.convert(VectorOperators.B2S, 0);
|
||||
Vector<Short> prod16 = va16.mul(vb16);
|
||||
|
||||
acc = acc.add(prod16.convertShape(VectorOperators.S2I, IntVector.SPECIES_128, 0));
|
||||
}
|
||||
// reduce
|
||||
res += acc.reduceLanes(VectorOperators.ADD);
|
||||
// tricky: we don't have SPECIES_32, so we workaround with "overlapping read"
|
||||
i += ByteVector.SPECIES_64.loopBound(a.length - ByteVector.SPECIES_64.length());
|
||||
res += dotProductBody128(a, b, i);
|
||||
}
|
||||
}
|
||||
|
||||
// scalar tail
|
||||
for (; i < a.length; i++) {
|
||||
res += b[i] * a[i];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/** vectorized dot product body (256+ bit vectors) */
|
||||
private int dotProductBody256(byte[] a, byte[] b, int limit) {
|
||||
IntVector acc = IntVector.zero(IntVector.SPECIES_PREFERRED);
|
||||
for (int i = 0; i < limit; i += BYTE_SPECIES.length()) {
|
||||
ByteVector va8 = ByteVector.fromArray(BYTE_SPECIES, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(BYTE_SPECIES, b, i);
|
||||
|
||||
// 16-bit multiply
|
||||
Vector<Short> va16 = va8.convertShape(B2S, SHORT_SPECIES, 0);
|
||||
Vector<Short> vb16 = vb8.convertShape(B2S, SHORT_SPECIES, 0);
|
||||
Vector<Short> prod16 = va16.mul(vb16);
|
||||
|
||||
// 32-bit add
|
||||
Vector<Integer> prod32 = prod16.convertShape(S2I, IntVector.SPECIES_PREFERRED, 0);
|
||||
acc = acc.add(prod32);
|
||||
}
|
||||
// reduce
|
||||
return acc.reduceLanes(ADD);
|
||||
}
|
||||
|
||||
/** vectorized dot product body (128 bit vectors) */
|
||||
private int dotProductBody128(byte[] a, byte[] b, int limit) {
|
||||
IntVector acc = IntVector.zero(IntVector.SPECIES_128);
|
||||
// 4 bytes at a time (re-loading half the vector each time!)
|
||||
for (int i = 0; i < limit; i += ByteVector.SPECIES_64.length() >> 1) {
|
||||
// load 8 bytes
|
||||
ByteVector va8 = ByteVector.fromArray(ByteVector.SPECIES_64, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(ByteVector.SPECIES_64, b, i);
|
||||
|
||||
// process first "half" only: 16-bit multiply
|
||||
Vector<Short> va16 = va8.convert(B2S, 0);
|
||||
Vector<Short> vb16 = vb8.convert(B2S, 0);
|
||||
Vector<Short> prod16 = va16.mul(vb16);
|
||||
|
||||
// 32-bit add
|
||||
acc = acc.add(prod16.convertShape(S2I, IntVector.SPECIES_128, 0));
|
||||
}
|
||||
// reduce
|
||||
return acc.reduceLanes(ADD);
|
||||
}
|
||||
|
||||
@Override
|
||||
public float cosine(byte[] a, byte[] b) {
|
||||
int i = 0;
|
||||
int sum = 0;
|
||||
int norm1 = 0;
|
||||
int norm2 = 0;
|
||||
|
||||
// only vectorize if we'll at least enter the loop a single time, and we have at least 128-bit
|
||||
// vectors (256-bit on intel to dodge performance landmines)
|
||||
if (a.length >= 16 && useIntegerVectors) {
|
||||
final float[] ret;
|
||||
if (INT_SPECIES_PREF_BIT_SIZE >= 256) {
|
||||
// optimized 256/512 bit implementation, processes 8/16 bytes at a time
|
||||
int upperBound = PREF_BYTE_SPECIES.loopBound(a.length);
|
||||
IntVector accSum = IntVector.zero(IntVector.SPECIES_PREFERRED);
|
||||
IntVector accNorm1 = IntVector.zero(IntVector.SPECIES_PREFERRED);
|
||||
IntVector accNorm2 = IntVector.zero(IntVector.SPECIES_PREFERRED);
|
||||
for (; i < upperBound; i += PREF_BYTE_SPECIES.length()) {
|
||||
ByteVector va8 = ByteVector.fromArray(PREF_BYTE_SPECIES, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(PREF_BYTE_SPECIES, b, i);
|
||||
Vector<Short> va16 = va8.convertShape(VectorOperators.B2S, PREF_SHORT_SPECIES, 0);
|
||||
Vector<Short> vb16 = vb8.convertShape(VectorOperators.B2S, PREF_SHORT_SPECIES, 0);
|
||||
Vector<Short> prod16 = va16.mul(vb16);
|
||||
Vector<Short> norm1_16 = va16.mul(va16);
|
||||
Vector<Short> norm2_16 = vb16.mul(vb16);
|
||||
Vector<Integer> prod32 =
|
||||
prod16.convertShape(VectorOperators.S2I, IntVector.SPECIES_PREFERRED, 0);
|
||||
Vector<Integer> norm1_32 =
|
||||
norm1_16.convertShape(VectorOperators.S2I, IntVector.SPECIES_PREFERRED, 0);
|
||||
Vector<Integer> norm2_32 =
|
||||
norm2_16.convertShape(VectorOperators.S2I, IntVector.SPECIES_PREFERRED, 0);
|
||||
accSum = accSum.add(prod32);
|
||||
accNorm1 = accNorm1.add(norm1_32);
|
||||
accNorm2 = accNorm2.add(norm2_32);
|
||||
}
|
||||
// reduce
|
||||
sum += accSum.reduceLanes(VectorOperators.ADD);
|
||||
norm1 += accNorm1.reduceLanes(VectorOperators.ADD);
|
||||
norm2 += accNorm2.reduceLanes(VectorOperators.ADD);
|
||||
i += BYTE_SPECIES.loopBound(a.length);
|
||||
ret = cosineBody256(a, b, i);
|
||||
} else {
|
||||
// 128-bit impl, which is tricky since we don't have SPECIES_32, it does "overlapping read"
|
||||
int upperBound = ByteVector.SPECIES_64.loopBound(a.length - ByteVector.SPECIES_64.length());
|
||||
IntVector accSum = IntVector.zero(IntVector.SPECIES_128);
|
||||
IntVector accNorm1 = IntVector.zero(IntVector.SPECIES_128);
|
||||
IntVector accNorm2 = IntVector.zero(IntVector.SPECIES_128);
|
||||
for (; i < upperBound; i += ByteVector.SPECIES_64.length() >> 1) {
|
||||
ByteVector va8 = ByteVector.fromArray(ByteVector.SPECIES_64, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(ByteVector.SPECIES_64, b, i);
|
||||
|
||||
// process first half only
|
||||
Vector<Short> va16 = va8.convert(VectorOperators.B2S, 0);
|
||||
Vector<Short> vb16 = vb8.convert(VectorOperators.B2S, 0);
|
||||
Vector<Short> norm1_16 = va16.mul(va16);
|
||||
Vector<Short> norm2_16 = vb16.mul(vb16);
|
||||
Vector<Short> prod16 = va16.mul(vb16);
|
||||
|
||||
// sum into accumulators
|
||||
accNorm1 =
|
||||
accNorm1.add(norm1_16.convertShape(VectorOperators.S2I, IntVector.SPECIES_128, 0));
|
||||
accNorm2 =
|
||||
accNorm2.add(norm2_16.convertShape(VectorOperators.S2I, IntVector.SPECIES_128, 0));
|
||||
accSum = accSum.add(prod16.convertShape(VectorOperators.S2I, IntVector.SPECIES_128, 0));
|
||||
}
|
||||
// reduce
|
||||
sum += accSum.reduceLanes(VectorOperators.ADD);
|
||||
norm1 += accNorm1.reduceLanes(VectorOperators.ADD);
|
||||
norm2 += accNorm2.reduceLanes(VectorOperators.ADD);
|
||||
// tricky: we don't have SPECIES_32, so we workaround with "overlapping read"
|
||||
i += ByteVector.SPECIES_64.loopBound(a.length - ByteVector.SPECIES_64.length());
|
||||
ret = cosineBody128(a, b, i);
|
||||
}
|
||||
sum += ret[0];
|
||||
norm1 += ret[1];
|
||||
norm2 += ret[2];
|
||||
}
|
||||
|
||||
// scalar tail
|
||||
for (; i < a.length; i++) {
|
||||
byte elem1 = a[i];
|
||||
byte elem2 = b[i];
|
||||
|
@ -384,58 +398,131 @@ final class PanamaVectorUtilSupport implements VectorUtilSupport {
|
|||
return (float) (sum / Math.sqrt((double) norm1 * (double) norm2));
|
||||
}
|
||||
|
||||
/** vectorized cosine body (256+ bit vectors) */
|
||||
private float[] cosineBody256(byte[] a, byte[] b, int limit) {
|
||||
// optimized 256/512 bit implementation, processes 8/16 bytes at a time
|
||||
IntVector accSum = IntVector.zero(IntVector.SPECIES_PREFERRED);
|
||||
IntVector accNorm1 = IntVector.zero(IntVector.SPECIES_PREFERRED);
|
||||
IntVector accNorm2 = IntVector.zero(IntVector.SPECIES_PREFERRED);
|
||||
for (int i = 0; i < limit; i += BYTE_SPECIES.length()) {
|
||||
ByteVector va8 = ByteVector.fromArray(BYTE_SPECIES, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(BYTE_SPECIES, b, i);
|
||||
|
||||
// 16-bit multiply
|
||||
Vector<Short> va16 = va8.convertShape(B2S, SHORT_SPECIES, 0);
|
||||
Vector<Short> vb16 = vb8.convertShape(B2S, SHORT_SPECIES, 0);
|
||||
Vector<Short> prod16 = va16.mul(vb16);
|
||||
Vector<Short> norm1_16 = va16.mul(va16);
|
||||
Vector<Short> norm2_16 = vb16.mul(vb16);
|
||||
|
||||
// sum into accumulators: 32-bit add
|
||||
Vector<Integer> prod32 = prod16.convertShape(S2I, IntVector.SPECIES_PREFERRED, 0);
|
||||
Vector<Integer> norm1_32 = norm1_16.convertShape(S2I, IntVector.SPECIES_PREFERRED, 0);
|
||||
Vector<Integer> norm2_32 = norm2_16.convertShape(S2I, IntVector.SPECIES_PREFERRED, 0);
|
||||
accSum = accSum.add(prod32);
|
||||
accNorm1 = accNorm1.add(norm1_32);
|
||||
accNorm2 = accNorm2.add(norm2_32);
|
||||
}
|
||||
// reduce
|
||||
return new float[] {
|
||||
accSum.reduceLanes(ADD), accNorm1.reduceLanes(ADD), accNorm2.reduceLanes(ADD)
|
||||
};
|
||||
}
|
||||
|
||||
/** vectorized cosine body (128 bit vectors) */
|
||||
private float[] cosineBody128(byte[] a, byte[] b, int limit) {
|
||||
IntVector accSum = IntVector.zero(IntVector.SPECIES_128);
|
||||
IntVector accNorm1 = IntVector.zero(IntVector.SPECIES_128);
|
||||
IntVector accNorm2 = IntVector.zero(IntVector.SPECIES_128);
|
||||
for (int i = 0; i < limit; i += ByteVector.SPECIES_64.length() >> 1) {
|
||||
ByteVector va8 = ByteVector.fromArray(ByteVector.SPECIES_64, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(ByteVector.SPECIES_64, b, i);
|
||||
|
||||
// process first half only: 16-bit multiply
|
||||
Vector<Short> va16 = va8.convert(B2S, 0);
|
||||
Vector<Short> vb16 = vb8.convert(B2S, 0);
|
||||
Vector<Short> norm1_16 = va16.mul(va16);
|
||||
Vector<Short> norm2_16 = vb16.mul(vb16);
|
||||
Vector<Short> prod16 = va16.mul(vb16);
|
||||
|
||||
// sum into accumulators: 32-bit add
|
||||
accNorm1 = accNorm1.add(norm1_16.convertShape(S2I, IntVector.SPECIES_128, 0));
|
||||
accNorm2 = accNorm2.add(norm2_16.convertShape(S2I, IntVector.SPECIES_128, 0));
|
||||
accSum = accSum.add(prod16.convertShape(S2I, IntVector.SPECIES_128, 0));
|
||||
}
|
||||
// reduce
|
||||
return new float[] {
|
||||
accSum.reduceLanes(ADD), accNorm1.reduceLanes(ADD), accNorm2.reduceLanes(ADD)
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public int squareDistance(byte[] a, byte[] b) {
|
||||
int i = 0;
|
||||
int res = 0;
|
||||
|
||||
// only vectorize if we'll at least enter the loop a single time, and we have at least 128-bit
|
||||
// vectors (256-bit on intel to dodge performance landmines)
|
||||
if (a.length >= 16 && useIntegerVectors) {
|
||||
if (INT_SPECIES_PREF_BIT_SIZE >= 256) {
|
||||
// optimized 256/512 bit implementation, processes 8/16 bytes at a time
|
||||
int upperBound = PREF_BYTE_SPECIES.loopBound(a.length);
|
||||
IntVector acc = IntVector.zero(IntVector.SPECIES_PREFERRED);
|
||||
for (; i < upperBound; i += PREF_BYTE_SPECIES.length()) {
|
||||
ByteVector va8 = ByteVector.fromArray(PREF_BYTE_SPECIES, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(PREF_BYTE_SPECIES, b, i);
|
||||
Vector<Short> va16 = va8.convertShape(VectorOperators.B2S, PREF_SHORT_SPECIES, 0);
|
||||
Vector<Short> vb16 = vb8.convertShape(VectorOperators.B2S, PREF_SHORT_SPECIES, 0);
|
||||
Vector<Short> diff16 = va16.sub(vb16);
|
||||
Vector<Integer> diff32 =
|
||||
diff16.convertShape(VectorOperators.S2I, IntVector.SPECIES_PREFERRED, 0);
|
||||
acc = acc.add(diff32.mul(diff32));
|
||||
}
|
||||
// reduce
|
||||
res += acc.reduceLanes(VectorOperators.ADD);
|
||||
i += BYTE_SPECIES.loopBound(a.length);
|
||||
res += squareDistanceBody256(a, b, i);
|
||||
} else {
|
||||
// 128-bit implementation, which must "split up" vectors due to widening conversions
|
||||
int upperBound = ByteVector.SPECIES_64.loopBound(a.length);
|
||||
IntVector acc1 = IntVector.zero(IntVector.SPECIES_128);
|
||||
IntVector acc2 = IntVector.zero(IntVector.SPECIES_128);
|
||||
for (; i < upperBound; i += ByteVector.SPECIES_64.length()) {
|
||||
ByteVector va8 = ByteVector.fromArray(ByteVector.SPECIES_64, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(ByteVector.SPECIES_64, b, i);
|
||||
// expand each byte vector into short vector and subtract
|
||||
Vector<Short> va16 = va8.convertShape(VectorOperators.B2S, ShortVector.SPECIES_128, 0);
|
||||
Vector<Short> vb16 = vb8.convertShape(VectorOperators.B2S, ShortVector.SPECIES_128, 0);
|
||||
Vector<Short> diff16 = va16.sub(vb16);
|
||||
// split each short vector into two int vectors, square, and add
|
||||
Vector<Integer> diff32_1 =
|
||||
diff16.convertShape(VectorOperators.S2I, IntVector.SPECIES_128, 0);
|
||||
Vector<Integer> diff32_2 =
|
||||
diff16.convertShape(VectorOperators.S2I, IntVector.SPECIES_128, 1);
|
||||
acc1 = acc1.add(diff32_1.mul(diff32_1));
|
||||
acc2 = acc2.add(diff32_2.mul(diff32_2));
|
||||
}
|
||||
// reduce
|
||||
res += acc1.add(acc2).reduceLanes(VectorOperators.ADD);
|
||||
i += ByteVector.SPECIES_64.loopBound(a.length);
|
||||
res += squareDistanceBody128(a, b, i);
|
||||
}
|
||||
}
|
||||
|
||||
// scalar tail
|
||||
for (; i < a.length; i++) {
|
||||
int diff = a[i] - b[i];
|
||||
res += diff * diff;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/** vectorized square distance body (256+ bit vectors) */
|
||||
private int squareDistanceBody256(byte[] a, byte[] b, int limit) {
|
||||
IntVector acc = IntVector.zero(IntVector.SPECIES_PREFERRED);
|
||||
for (int i = 0; i < limit; i += BYTE_SPECIES.length()) {
|
||||
ByteVector va8 = ByteVector.fromArray(BYTE_SPECIES, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(BYTE_SPECIES, b, i);
|
||||
|
||||
// 16-bit sub
|
||||
Vector<Short> va16 = va8.convertShape(B2S, SHORT_SPECIES, 0);
|
||||
Vector<Short> vb16 = vb8.convertShape(B2S, SHORT_SPECIES, 0);
|
||||
Vector<Short> diff16 = va16.sub(vb16);
|
||||
|
||||
// 32-bit multiply and add into accumulators
|
||||
Vector<Integer> diff32 = diff16.convertShape(S2I, IntVector.SPECIES_PREFERRED, 0);
|
||||
acc = acc.add(diff32.mul(diff32));
|
||||
}
|
||||
// reduce
|
||||
return acc.reduceLanes(ADD);
|
||||
}
|
||||
|
||||
/** vectorized square distance body (128 bit vectors) */
|
||||
private int squareDistanceBody128(byte[] a, byte[] b, int limit) {
|
||||
// 128-bit implementation, which must "split up" vectors due to widening conversions
|
||||
// it doesn't help to do the overlapping read trick, due to 32-bit multiply in the formula
|
||||
IntVector acc1 = IntVector.zero(IntVector.SPECIES_128);
|
||||
IntVector acc2 = IntVector.zero(IntVector.SPECIES_128);
|
||||
for (int i = 0; i < limit; i += ByteVector.SPECIES_64.length()) {
|
||||
ByteVector va8 = ByteVector.fromArray(ByteVector.SPECIES_64, a, i);
|
||||
ByteVector vb8 = ByteVector.fromArray(ByteVector.SPECIES_64, b, i);
|
||||
|
||||
// 16-bit sub
|
||||
Vector<Short> va16 = va8.convertShape(B2S, ShortVector.SPECIES_128, 0);
|
||||
Vector<Short> vb16 = vb8.convertShape(B2S, ShortVector.SPECIES_128, 0);
|
||||
Vector<Short> diff16 = va16.sub(vb16);
|
||||
|
||||
// 32-bit multiply and add into accumulators
|
||||
Vector<Integer> diff32_1 = diff16.convertShape(S2I, IntVector.SPECIES_128, 0);
|
||||
Vector<Integer> diff32_2 = diff16.convertShape(S2I, IntVector.SPECIES_128, 1);
|
||||
acc1 = acc1.add(diff32_1.mul(diff32_1));
|
||||
acc2 = acc2.add(diff32_2.mul(diff32_2));
|
||||
}
|
||||
// reduce
|
||||
return acc1.add(acc2).reduceLanes(ADD);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue