mirror of https://github.com/apache/lucene.git
[LUCENE-4345] - starting incorporating Simon's suggestions: using BytesRef and TotalHitCountCollector
git-svn-id: https://svn.apache.org/repos/asf/lucene/dev/trunk@1384657 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
cf02188f2b
commit
dc3f1d7b3d
|
@ -24,6 +24,7 @@ import java.io.IOException;
|
|||
|
||||
/**
|
||||
* A classifier, see <code>http://en.wikipedia.org/wiki/Classifier_(mathematics)</code>
|
||||
* @lucene.experimental
|
||||
*/
|
||||
public interface Classifier {
|
||||
|
||||
|
|
|
@ -29,6 +29,7 @@ import org.apache.lucene.search.BooleanClause;
|
|||
import org.apache.lucene.search.BooleanQuery;
|
||||
import org.apache.lucene.search.IndexSearcher;
|
||||
import org.apache.lucene.search.TermQuery;
|
||||
import org.apache.lucene.search.TotalHitCountCollector;
|
||||
import org.apache.lucene.util.BytesRef;
|
||||
|
||||
import java.io.IOException;
|
||||
|
@ -38,6 +39,7 @@ import java.util.LinkedList;
|
|||
|
||||
/**
|
||||
* A simplistic Lucene based NaiveBayes classifier, see <code>http://en.wikipedia.org/wiki/Naive_Bayes_classifier</code>
|
||||
* @lucene.experimental
|
||||
*/
|
||||
public class SimpleNaiveBayesClassifier implements Classifier {
|
||||
|
||||
|
@ -82,29 +84,27 @@ public class SimpleNaiveBayesClassifier implements Classifier {
|
|||
if (atomicReader == null) {
|
||||
throw new RuntimeException("need to train the classifier first");
|
||||
}
|
||||
Double max = 0d;
|
||||
double max = 0d;
|
||||
String foundClass = null;
|
||||
|
||||
Terms terms = MultiFields.getTerms(atomicReader, classFieldName);
|
||||
TermsEnum termsEnum = terms.iterator(null);
|
||||
BytesRef t = termsEnum.next();
|
||||
while (t != null) {
|
||||
String classValue = t.utf8ToString();
|
||||
BytesRef next;
|
||||
while((next = termsEnum.next()) != null) {
|
||||
// TODO : turn it to be in log scale
|
||||
Double clVal = calculatePrior(classValue) * calculateLikelihood(inputDocument, classValue);
|
||||
double clVal = calculatePrior(next) * calculateLikelihood(inputDocument, next);
|
||||
if (clVal > max) {
|
||||
max = clVal;
|
||||
foundClass = classValue;
|
||||
foundClass = next.utf8ToString();
|
||||
}
|
||||
t = termsEnum.next();
|
||||
}
|
||||
return foundClass;
|
||||
}
|
||||
|
||||
|
||||
private Double calculateLikelihood(String document, String c) throws IOException {
|
||||
private double calculateLikelihood(String document, BytesRef c) throws IOException {
|
||||
// for each word
|
||||
Double result = 1d;
|
||||
double result = 1d;
|
||||
for (String word : tokenizeDoc(document)) {
|
||||
// search with text:word AND class:c
|
||||
int hits = getWordFreqForClass(word, c);
|
||||
|
@ -124,7 +124,7 @@ public class SimpleNaiveBayesClassifier implements Classifier {
|
|||
return result;
|
||||
}
|
||||
|
||||
private double getTextTermFreqForClass(String c) throws IOException {
|
||||
private double getTextTermFreqForClass(BytesRef c) throws IOException {
|
||||
Terms terms = MultiFields.getTerms(atomicReader, textFieldName);
|
||||
long numPostings = terms.getSumDocFreq(); // number of term/doc pairs
|
||||
double avgNumberOfUniqueTerms = numPostings / (double) terms.getDocCount(); // avg # of unique terms per doc
|
||||
|
@ -132,18 +132,20 @@ public class SimpleNaiveBayesClassifier implements Classifier {
|
|||
return avgNumberOfUniqueTerms * docsWithC; // avg # of unique terms in text field per doc * # docs with c
|
||||
}
|
||||
|
||||
private int getWordFreqForClass(String word, String c) throws IOException {
|
||||
private int getWordFreqForClass(String word, BytesRef c) throws IOException {
|
||||
BooleanQuery booleanQuery = new BooleanQuery();
|
||||
booleanQuery.add(new BooleanClause(new TermQuery(new Term(textFieldName, word)), BooleanClause.Occur.MUST));
|
||||
booleanQuery.add(new BooleanClause(new TermQuery(new Term(classFieldName, c)), BooleanClause.Occur.MUST));
|
||||
return indexSearcher.search(booleanQuery, 1).totalHits;
|
||||
TotalHitCountCollector totalHitCountCollector = new TotalHitCountCollector();
|
||||
indexSearcher.search(booleanQuery, totalHitCountCollector);
|
||||
return totalHitCountCollector.getTotalHits();
|
||||
}
|
||||
|
||||
private Double calculatePrior(String currentClass) throws IOException {
|
||||
private double calculatePrior(BytesRef currentClass) throws IOException {
|
||||
return (double) docCount(currentClass) / docsWithClassSize;
|
||||
}
|
||||
|
||||
private int docCount(String countedClass) throws IOException {
|
||||
private int docCount(BytesRef countedClass) throws IOException {
|
||||
return atomicReader.docFreq(new Term(classFieldName, countedClass));
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue