LUCENE-2667: Improve defaults for FuzzyQuery so it has good performance

git-svn-id: https://svn.apache.org/repos/asf/lucene/dev/trunk@1002214 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Robert Muir 2010-09-28 15:11:12 +00:00
parent 3c26a9167c
commit dfed16f2fd
29 changed files with 167 additions and 86 deletions

View File

@ -113,6 +113,14 @@ Changes in backwards compatibility policy
If you index empty fields and uses positions/offsets information on that
fields, reindex is recommended. (David Smiley, Koji Sekiguchi)
* LUCENE-2667: FuzzyQuery's defaults have changed for more performant
behavior: the minimum similarity is 2 edit distances from the word,
and the priority queue size is 50. To support this, FuzzyQuery now allows
specifying unscaled edit distances (foobar~2). If your application depends
upon the old defaults of 0.5 (scaled) minimum similarity and Integer.MAX_VALUE
priority queue size, you can use FuzzyQuery(Term, float, int, int) to specify
those explicitly.
Changes in Runtime Behavior
* LUCENE-2650: The behavior of FSDirectory.open has changed. On 64-bit

View File

@ -614,7 +614,7 @@ public class HighlighterTest extends BaseTokenStreamTestCase implements Formatte
@Override
public void run() throws Exception {
numHighlights = 0;
doSearching("Kinnedy~");
doSearching("Kinnedy~0.5");
doStandardHighlights(analyzer, searcher, hits, query, HighlighterTest.this, true);
assertTrue("Failed to find correct number of highlights " + numHighlights + " found",
numHighlights == 5);

View File

@ -40,6 +40,7 @@ public class QueryParserMessages extends NLS {
public static String INVALID_SYNTAX;
public static String INVALID_SYNTAX_CANNOT_PARSE;
public static String INVALID_SYNTAX_FUZZY_LIMITS;
public static String INVALID_SYNTAX_FUZZY_EDITS;
public static String INVALID_SYNTAX_ESCAPE_UNICODE_TRUNCATION;
public static String INVALID_SYNTAX_ESCAPE_CHARACTER;
public static String INVALID_SYNTAX_ESCAPE_NONE_HEX_UNICODE;

View File

@ -109,4 +109,4 @@ public interface CharStream {
void Done();
}
/* JavaCC - OriginalChecksum=7bcd45d10a032f1c9da64691d073cf75 (do not edit this line) */
/* JavaCC - OriginalChecksum=8cc617b193267dc876ef9699367c8186 (do not edit this line) */

View File

@ -195,4 +195,4 @@ public class ParseException extends Exception {
}
}
/* JavaCC - OriginalChecksum=4440e368eeef562faffeca98a200334b (do not edit this line) */
/* JavaCC - OriginalChecksum=15fbbe38a36c8ac9e2740d030624c321 (do not edit this line) */

View File

@ -164,7 +164,7 @@ public class PrecedenceQueryParser implements PrecedenceQueryParserConstants {
/**
* Set the minimum similarity for fuzzy queries.
* Default is 0.5f.
* Default is 2f.
*/
public void setFuzzyMinSim(float fuzzyMinSim) {
this.fuzzyMinSim = fuzzyMinSim;
@ -927,8 +927,10 @@ public class PrecedenceQueryParser implements PrecedenceQueryParserConstants {
try {
fms = Float.valueOf(fuzzySlop.image.substring(1)).floatValue();
} catch (Exception ignored) { }
if(fms < 0.0f || fms > 1.0f){
if(fms < 0.0f){
{if (true) throw new ParseException("Minimum similarity for a FuzzyQuery has to be between 0.0f and 1.0f !");}
} else if (fms >= 1.0f && fms != (int) fms) {
{if (true) throw new ParseException("Fractional edit distances are not allowed!");}
}
q = getFuzzyQuery(field, termImage, fms);
} else {

View File

@ -188,7 +188,7 @@ public class PrecedenceQueryParser {
/**
* Set the minimum similarity for fuzzy queries.
* Default is 0.5f.
* Default is 2f.
*/
public void setFuzzyMinSim(float fuzzyMinSim) {
this.fuzzyMinSim = fuzzyMinSim;
@ -905,8 +905,10 @@ Query Term(String field) : {
try {
fms = Float.valueOf(fuzzySlop.image.substring(1)).floatValue();
} catch (Exception ignored) { }
if(fms < 0.0f || fms > 1.0f){
if(fms < 0.0f){
throw new ParseException("Minimum similarity for a FuzzyQuery has to be between 0.0f and 1.0f !");
} else if (fms >= 1.0f && fms != (int) fms) {
throw new ParseException("Fractional edit distances are not allowed!");
}
q = getFuzzyQuery(field, termImage, fms);
} else {

View File

@ -121,4 +121,4 @@ public class Token {
}
}
/* JavaCC - OriginalChecksum=bc9495ddfa3189061fb4f1bf3c4f64e2 (do not edit this line) */
/* JavaCC - OriginalChecksum=0dc5808f2ab8aac8775ea9175fa2cb51 (do not edit this line) */

View File

@ -138,4 +138,4 @@ public class TokenMgrError extends Error
this(LexicalError(EOFSeen, lexState, errorLine, errorColumn, errorAfter, curChar), reason);
}
}
/* JavaCC - OriginalChecksum=e01667f2eb6d0b2f1fbb6958df0ca751 (do not edit this line) */
/* JavaCC - OriginalChecksum=257b82f2650841e86289a309cb3dae76 (do not edit this line) */

View File

@ -613,4 +613,4 @@ public class JavaCharStream
}
}
/* JavaCC - OriginalChecksum=31519f95b41182c6740c2afd8dfbf344 (do not edit this line) */
/* JavaCC - OriginalChecksum=f19c73b8f7faf94cc4a581e7b2933cc6 (do not edit this line) */

View File

@ -193,4 +193,4 @@ public class ParseException extends QueryNodeParseException {
}
}
/* JavaCC - OriginalChecksum=d0caeac083e9874065f9d1e298b5ccd9 (do not edit this line) */
/* JavaCC - OriginalChecksum=38bce846fe6c8482993969f741c0323e (do not edit this line) */

View File

@ -433,8 +433,10 @@ public class StandardSyntaxParser implements SyntaxParser, StandardSyntaxParserC
try {
fms = Float.valueOf(fuzzySlop.image.substring(1)).floatValue();
} catch (Exception ignored) { }
if(fms < 0.0f || fms > 1.0f){
if(fms < 0.0f){
{if (true) throw new ParseException(new MessageImpl(QueryParserMessages.INVALID_SYNTAX_FUZZY_LIMITS));}
} else if (fms >= 1.0f && fms != (int) fms) {
{if (true) throw new ParseException(new MessageImpl(QueryParserMessages.INVALID_SYNTAX_FUZZY_EDITS));}
}
q = new FuzzyQueryNode(field, EscapeQuerySyntaxImpl.discardEscapeChar(term.image), fms, term.beginColumn, term.endColumn);
} else if (regexp) {

View File

@ -396,8 +396,10 @@ QueryNode Term(CharSequence field) : {
try {
fms = Float.valueOf(fuzzySlop.image.substring(1)).floatValue();
} catch (Exception ignored) { }
if(fms < 0.0f || fms > 1.0f){
if(fms < 0.0f){
throw new ParseException(new MessageImpl(QueryParserMessages.INVALID_SYNTAX_FUZZY_LIMITS));
} else if (fms >= 1.0f && fms != (int) fms) {
throw new ParseException(new MessageImpl(QueryParserMessages.INVALID_SYNTAX_FUZZY_EDITS));
}
q = new FuzzyQueryNode(field, EscapeQuerySyntaxImpl.discardEscapeChar(term.image), fms, term.beginColumn, term.endColumn);
} else if (regexp) {

View File

@ -121,4 +121,4 @@ public class Token {
}
}
/* JavaCC - OriginalChecksum=cecb6022e0f2e2fca751015375f6d319 (do not edit this line) */
/* JavaCC - OriginalChecksum=0aac6816ecd328eda2f38b9d09739ab6 (do not edit this line) */

View File

@ -138,4 +138,4 @@ public class TokenMgrError extends Error
this(LexicalError(EOFSeen, lexState, errorLine, errorColumn, errorAfter, curChar), reason);
}
}
/* JavaCC - OriginalChecksum=0e9c5fad06efef4f41f97b851ac7b0ce (do not edit this line) */
/* JavaCC - OriginalChecksum=a75b5b61664a73631a032a6e44f4b38a (do not edit this line) */

View File

@ -12,6 +12,9 @@ INVALID_SYNTAX_CANNOT_PARSE = Syntax Error, cannot parse {0}: {1}
#<CREATEDBY>Apache Lucene Community</CREATEDBY>
INVALID_SYNTAX_FUZZY_LIMITS = The similarity value for a fuzzy search must be between 0.0 and 1.0.
#<CREATEDBY>Apache Lucene Community</CREATEDBY>
INVALID_SYNTAX_FUZZY_EDITS = Fractional edit distances are not allowed.
#<CREATEDBY>Apache Lucene Community</CREATEDBY>
INVALID_SYNTAX_ESCAPE_UNICODE_TRUNCATION = Truncated unicode escape sequence.

View File

@ -64,7 +64,7 @@ public class TestAnalyzingQueryParser extends LuceneTestCase {
"Mötley Crüe Mötley~0.75 Crüe~0.5",
"Renée Zellweger Renée~0.9 Zellweger~" };
fuzzyExpected = new String[] { "ubersetzung ubersetzung~0.9",
"motley crue motley~0.75 crue~0.5", "renee zellweger renee~0.9 zellweger~0.5" };
"motley crue motley~0.75 crue~0.5", "renee zellweger renee~0.9 zellweger~2.0" };
a = new ASCIIAnalyzer();
}

View File

@ -543,10 +543,10 @@ public class TestPrecedenceQueryParser extends LuceneTestCase {
assertQueryEquals("a:b\\\\?c", a, "a:b\\?c");
assertQueryEquals("a:b\\-c~", a, "a:b-c~0.5");
assertQueryEquals("a:b\\+c~", a, "a:b+c~0.5");
assertQueryEquals("a:b\\:c~", a, "a:b:c~0.5");
assertQueryEquals("a:b\\\\c~", a, "a:b\\c~0.5");
assertQueryEquals("a:b\\-c~", a, "a:b-c~2.0");
assertQueryEquals("a:b\\+c~", a, "a:b+c~2.0");
assertQueryEquals("a:b\\:c~", a, "a:b:c~2.0");
assertQueryEquals("a:b\\\\c~", a, "a:b\\c~2.0");
assertQueryEquals("[ a\\- TO a\\+ ]", null, "[a- TO a+]");
assertQueryEquals("[ a\\: TO a\\~ ]", null, "[a: TO a~]");

View File

@ -109,4 +109,4 @@ public interface CharStream {
void Done();
}
/* JavaCC - OriginalChecksum=a83909a2403f969f94d18375f9f143e4 (do not edit this line) */
/* JavaCC - OriginalChecksum=32a89423891f765dde472f7ef0e3ef7b (do not edit this line) */

View File

@ -195,4 +195,4 @@ public class ParseException extends Exception {
}
}
/* JavaCC - OriginalChecksum=c63b396885c4ff44d7aa48d3feae60cd (do not edit this line) */
/* JavaCC - OriginalChecksum=c7631a240f7446940695eac31d9483ca (do not edit this line) */

View File

@ -269,7 +269,7 @@ public class QueryParser implements QueryParserConstants {
/**
* Set the minimum similarity for fuzzy queries.
* Default is 0.5f.
* Default is 2f.
*/
public void setFuzzyMinSim(float fuzzyMinSim) {
this.fuzzyMinSim = fuzzyMinSim;
@ -1446,8 +1446,10 @@ public class QueryParser implements QueryParserConstants {
try {
fms = Float.valueOf(fuzzySlop.image.substring(1)).floatValue();
} catch (Exception ignored) { }
if(fms < 0.0f || fms > 1.0f){
if(fms < 0.0f){
{if (true) throw new ParseException("Minimum similarity for a FuzzyQuery has to be between 0.0f and 1.0f !");}
} else if (fms >= 1.0f && fms != (int) fms) {
{if (true) throw new ParseException("Fractional edit distances are not allowed!");}
}
q = getFuzzyQuery(field, termImage,fms);
} else {

View File

@ -293,7 +293,7 @@ public class QueryParser {
/**
* Set the minimum similarity for fuzzy queries.
* Default is 0.5f.
* Default is 2f.
*/
public void setFuzzyMinSim(float fuzzyMinSim) {
this.fuzzyMinSim = fuzzyMinSim;
@ -1412,8 +1412,10 @@ Query Term(String field) : {
try {
fms = Float.valueOf(fuzzySlop.image.substring(1)).floatValue();
} catch (Exception ignored) { }
if(fms < 0.0f || fms > 1.0f){
if(fms < 0.0f){
throw new ParseException("Minimum similarity for a FuzzyQuery has to be between 0.0f and 1.0f !");
} else if (fms >= 1.0f && fms != (int) fms) {
throw new ParseException("Fractional edit distances are not allowed!");
}
q = getFuzzyQuery(field, termImage,fms);
} else {

View File

@ -121,4 +121,4 @@ public class Token {
}
}
/* JavaCC - OriginalChecksum=37b1923f964a5a434f5ea3d6952ff200 (do not edit this line) */
/* JavaCC - OriginalChecksum=c147cc166a7cf8812c7c39bc8c5eb868 (do not edit this line) */

View File

@ -138,4 +138,4 @@ public class TokenMgrError extends Error
this(LexicalError(EOFSeen, lexState, errorLine, errorColumn, errorAfter, curChar), reason);
}
}
/* JavaCC - OriginalChecksum=334e679cf1a88b3070bb8e3d80ee3f5e (do not edit this line) */
/* JavaCC - OriginalChecksum=1c94e13236c7e0121e49427992341ee3 (do not edit this line) */

View File

@ -21,16 +21,13 @@ import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.util.ToStringUtils;
import org.apache.lucene.util.automaton.LevenshteinAutomata;
import java.io.IOException;
/** Implements the fuzzy search query. The similarity measurement
* is based on the Levenshtein (edit distance) algorithm.
*
* <p><em>Warning:</em> this query is not very scalable with its default prefix
* length of 0 - in this case, *every* term will be enumerated and
* cause an edit score calculation.
*
* <p>This query uses {@link MultiTermQuery.TopTermsScoringBooleanQueryRewrite}
* as default. So terms will be collected and scored according to their
* edit distance. Only the top terms are used for building the {@link BooleanQuery}.
@ -38,9 +35,9 @@ import java.io.IOException;
*/
public class FuzzyQuery extends MultiTermQuery {
public final static float defaultMinSimilarity = 0.5f;
public final static float defaultMinSimilarity = LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE;
public final static int defaultPrefixLength = 0;
public final static int defaultMaxExpansions = Integer.MAX_VALUE;
public final static int defaultMaxExpansions = 50;
private float minimumSimilarity;
private int prefixLength;
@ -60,6 +57,12 @@ public class FuzzyQuery extends MultiTermQuery {
* <code>minimumSimilarity</code> of <code>0.5</code> a term of the same length
* as the query term is considered similar to the query term if the edit distance
* between both terms is less than <code>length(term)*0.5</code>
* <p>
* Alternatively, if <code>minimumSimilarity</code> is >= 1f, it is interpreted
* as a pure Levenshtein edit distance. For example, a value of <code>2f</code>
* will match all terms within an edit distance of <code>2</code> from the
* query term. Edit distances specified in this way may not be fractional.
*
* @param prefixLength length of common (non-fuzzy) prefix
* @param maxExpansions the maximum number of terms to match. If this number is
* greater than {@link BooleanQuery#getMaxClauseCount} when the query is rewritten,
@ -72,9 +75,9 @@ public class FuzzyQuery extends MultiTermQuery {
super(term.field());
this.term = term;
if (minimumSimilarity >= 1.0f)
throw new IllegalArgumentException("minimumSimilarity >= 1");
else if (minimumSimilarity < 0.0f)
if (minimumSimilarity >= 1.0f && minimumSimilarity != (int)minimumSimilarity)
throw new IllegalArgumentException("fractional edit distances are not allowed");
if (minimumSimilarity < 0.0f)
throw new IllegalArgumentException("minimumSimilarity < 0");
if (prefixLength < 0)
throw new IllegalArgumentException("prefixLength < 0");
@ -84,7 +87,8 @@ public class FuzzyQuery extends MultiTermQuery {
setRewriteMethod(new MultiTermQuery.TopTermsScoringBooleanQueryRewrite(maxExpansions));
String text = term.text();
if (text.codePointCount(0, text.length()) > 1.0f / (1.0f - minimumSimilarity)) {
int len = text.codePointCount(0, text.length());
if (len > 0 && (minimumSimilarity >= 1f || len > 1.0f / (1.0f - minimumSimilarity))) {
this.termLongEnough = true;
}
@ -93,21 +97,21 @@ public class FuzzyQuery extends MultiTermQuery {
}
/**
* Calls {@link #FuzzyQuery(Term, float) FuzzyQuery(term, minimumSimilarity, prefixLength, Integer.MAX_VALUE)}.
* Calls {@link #FuzzyQuery(Term, float) FuzzyQuery(term, minimumSimilarity, prefixLength, defaultMaxExpansions)}.
*/
public FuzzyQuery(Term term, float minimumSimilarity, int prefixLength) {
this(term, minimumSimilarity, prefixLength, defaultMaxExpansions);
}
/**
* Calls {@link #FuzzyQuery(Term, float) FuzzyQuery(term, minimumSimilarity, 0, Integer.MAX_VALUE)}.
* Calls {@link #FuzzyQuery(Term, float) FuzzyQuery(term, minimumSimilarity, 0, defaultMaxExpansions)}.
*/
public FuzzyQuery(Term term, float minimumSimilarity) {
this(term, minimumSimilarity, defaultPrefixLength, defaultMaxExpansions);
}
/**
* Calls {@link #FuzzyQuery(Term, float) FuzzyQuery(term, 0.5f, 0, Integer.MAX_VALUE)}.
* Calls {@link #FuzzyQuery(Term, float) FuzzyQuery(term, defaultMinSimilarity, 0, defaultMaxExpansions)}.
*/
public FuzzyQuery(Term term) {
this(term, defaultMinSimilarity, defaultPrefixLength, defaultMaxExpansions);

View File

@ -59,6 +59,7 @@ public final class FuzzyTermsEnum extends TermsEnum {
private final int termLength;
private int maxEdits;
private final boolean raw;
private List<ByteRunAutomaton> runAutomata;
@ -77,15 +78,15 @@ public final class FuzzyTermsEnum extends TermsEnum {
*
* @param reader Delivers terms.
* @param term Pattern term.
* @param minSimilarity Minimum required similarity for terms from the reader. Default value is 0.5f.
* @param minSimilarity Minimum required similarity for terms from the reader.
* @param prefixLength Length of required common prefix. Default value is 0.
* @throws IOException
*/
public FuzzyTermsEnum(IndexReader reader, Term term,
final float minSimilarity, final int prefixLength) throws IOException {
if (minSimilarity >= 1.0f)
throw new IllegalArgumentException("minimumSimilarity cannot be greater than or equal to 1");
else if (minSimilarity < 0.0f)
if (minSimilarity >= 1.0f && minSimilarity != (int)minSimilarity)
throw new IllegalArgumentException("fractional edit distances are not allowed");
if (minSimilarity < 0.0f)
throw new IllegalArgumentException("minimumSimilarity cannot be less than 0");
if(prefixLength < 0)
throw new IllegalArgumentException("prefixLength cannot be less than 0");
@ -102,12 +103,19 @@ public final class FuzzyTermsEnum extends TermsEnum {
//The prefix could be longer than the word.
//It's kind of silly though. It means we must match the entire word.
this.realPrefixLength = prefixLength > termLength ? termLength : prefixLength;
this.minSimilarity = minSimilarity;
this.scale_factor = 1.0f / (1.0f - minSimilarity);
// calculate the maximum k edits for this similarity
maxEdits = initialMaxDistance(minSimilarity, termLength);
// if minSimilarity >= 1, we treat it as number of edits
if (minSimilarity >= 1f) {
this.minSimilarity = 1 - (minSimilarity+1) / this.termLength;
maxEdits = (int) minSimilarity;
raw = true;
} else {
this.minSimilarity = minSimilarity;
// calculate the maximum k edits for this similarity
maxEdits = initialMaxDistance(this.minSimilarity, termLength);
raw = false;
}
this.scale_factor = 1.0f / (1.0f - this.minSimilarity);
TermsEnum subEnum = getAutomatonEnum(maxEdits, null);
setEnum(subEnum != null ? subEnum :
new LinearFuzzyTermsEnum());
@ -176,15 +184,11 @@ public final class FuzzyTermsEnum extends TermsEnum {
setEnum(newEnum);
}
}
// TODO, besides changing linear -> automaton, and swapping in a smaller
// automaton, we can also use this information to optimize the linear case
// itself: re-init maxDistances so the fast-fail happens for more terms due
// to the now stricter constraints.
}
// for some raw min similarity and input term length, the maximum # of edits
private int initialMaxDistance(float minimumSimilarity, int termLen) {
return (int) ((1-minimumSimilarity) * termLen);
return (int) ((1D-minimumSimilarity) * termLen);
}
// for some number of edits, the maximum possible scaled boost
@ -442,7 +446,7 @@ public final class FuzzyTermsEnum extends TermsEnum {
//which is 8-3 or more precisely Math.abs(3-8).
//if our maximum edit distance is 4, then we can discard this word
//without looking at it.
return 0.0f;
return Float.NEGATIVE_INFINITY;
}
// init matrix d
@ -473,7 +477,7 @@ public final class FuzzyTermsEnum extends TermsEnum {
if (j > maxDistance && bestPossibleEditDistance > maxDistance) { //equal is okay, but not greater
//the closest the target can be to the text is just too far away.
//this target is leaving the party early.
return 0.0f;
return Float.NEGATIVE_INFINITY;
}
// copy current distance counts to 'previous row' distance counts: swap p and d
@ -501,7 +505,8 @@ public final class FuzzyTermsEnum extends TermsEnum {
* @return the maximum levenshtein distance that we care about
*/
private int calculateMaxDistance(int m) {
return (int) ((1-minSimilarity) * (Math.min(text.length, m) + realPrefixLength));
return raw ? maxEdits : Math.min(maxEdits,
(int)((1-minSimilarity) * (Math.min(text.length, m) + realPrefixLength)));
}
}
}

View File

@ -87,7 +87,7 @@ public class TestMultiFieldQueryParser extends LuceneTestCase {
assertEquals("((b:one t:one)^2.0) (b:two t:two)", q.toString());
q = mfqp.parse("one~ two");
assertEquals("(b:one~0.5 t:one~0.5) (b:two t:two)", q.toString());
assertEquals("(b:one~2.0 t:one~2.0) (b:two t:two)", q.toString());
q = mfqp.parse("one~0.8 two^2");
assertEquals("(b:one~0.8 t:one~0.8) ((b:two t:two)^2.0)", q.toString());
@ -274,7 +274,7 @@ public class TestMultiFieldQueryParser extends LuceneTestCase {
q = parser.parse("bla*");
assertEquals("f1:bla* f2:bla* f3:bla*", q.toString());
q = parser.parse("bla~");
assertEquals("f1:bla~0.5 f2:bla~0.5 f3:bla~0.5", q.toString());
assertEquals("f1:bla~2.0 f2:bla~2.0 f3:bla~2.0", q.toString());
q = parser.parse("[a TO c]");
assertEquals("f1:[a TO c] f2:[a TO c] f3:[a TO c]", q.toString());
}

View File

@ -431,10 +431,10 @@ public class TestQueryParser extends LuceneTestCase {
public void testWildcard() throws Exception {
assertQueryEquals("term*", null, "term*");
assertQueryEquals("term*^2", null, "term*^2.0");
assertQueryEquals("term~", null, "term~0.5");
assertQueryEquals("term~", null, "term~2.0");
assertQueryEquals("term~0.7", null, "term~0.7");
assertQueryEquals("term~^2", null, "term~0.5^2.0");
assertQueryEquals("term^2~", null, "term~0.5^2.0");
assertQueryEquals("term~^3", null, "term~2.0^3.0");
assertQueryEquals("term^3~", null, "term~2.0^3.0");
assertQueryEquals("term*germ", null, "term*germ");
assertQueryEquals("term*germ^3", null, "term*germ^3.0");
@ -446,7 +446,7 @@ public class TestQueryParser extends LuceneTestCase {
assertEquals(0.7f, fq.getMinSimilarity(), 0.1f);
assertEquals(FuzzyQuery.defaultPrefixLength, fq.getPrefixLength());
fq = (FuzzyQuery)getQuery("term~", null);
assertEquals(0.5f, fq.getMinSimilarity(), 0.1f);
assertEquals(2.0f, fq.getMinSimilarity(), 0.1f);
assertEquals(FuzzyQuery.defaultPrefixLength, fq.getPrefixLength());
assertParseException("term~1.1"); // value > 1, throws exception
@ -481,9 +481,9 @@ public class TestQueryParser extends LuceneTestCase {
assertWildcardQueryEquals("TE?M", false, "TE?M");
assertWildcardQueryEquals("Te?m*gerM", false, "Te?m*gerM");
// Fuzzy queries:
assertWildcardQueryEquals("Term~", "term~0.5");
assertWildcardQueryEquals("Term~", true, "term~0.5");
assertWildcardQueryEquals("Term~", false, "Term~0.5");
assertWildcardQueryEquals("Term~", "term~2.0");
assertWildcardQueryEquals("Term~", true, "term~2.0");
assertWildcardQueryEquals("Term~", false, "Term~2.0");
// Range queries:
assertWildcardQueryEquals("[A TO C]", "[a TO c]");
assertWildcardQueryEquals("[A TO C]", true, "[a TO c]");
@ -761,10 +761,10 @@ public class TestQueryParser extends LuceneTestCase {
assertQueryEquals("a:b\\\\?c", a, "a:b\\?c");
assertQueryEquals("a:b\\-c~", a, "a:b-c~0.5");
assertQueryEquals("a:b\\+c~", a, "a:b+c~0.5");
assertQueryEquals("a:b\\:c~", a, "a:b:c~0.5");
assertQueryEquals("a:b\\\\c~", a, "a:b\\c~0.5");
assertQueryEquals("a:b\\-c~", a, "a:b-c~2.0");
assertQueryEquals("a:b\\+c~", a, "a:b+c~2.0");
assertQueryEquals("a:b\\:c~", a, "a:b:c~2.0");
assertQueryEquals("a:b\\\\c~", a, "a:b\\c~2.0");
assertQueryEquals("[ a\\- TO a\\+ ]", null, "[a- TO a+]");
assertQueryEquals("[ a\\: TO a\\~ ]", null, "[a: TO a~]");

View File

@ -202,58 +202,58 @@ public class TestFuzzyQuery extends LuceneTestCase {
FuzzyQuery query;
// not similar enough:
query = new FuzzyQuery(new Term("field", "xxxxx"), FuzzyQuery.defaultMinSimilarity, 0);
query = new FuzzyQuery(new Term("field", "xxxxx"), 0.5f, 0);
ScoreDoc[] hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(0, hits.length);
// edit distance to "aaaaaaa" = 3, this matches because the string is longer than
// in testDefaultFuzziness so a bigger difference is allowed:
query = new FuzzyQuery(new Term("field", "aaaaccc"), FuzzyQuery.defaultMinSimilarity, 0);
query = new FuzzyQuery(new Term("field", "aaaaccc"), 0.5f, 0);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(1, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaaaa"));
// now with prefix
query = new FuzzyQuery(new Term("field", "aaaaccc"), FuzzyQuery.defaultMinSimilarity, 1);
query = new FuzzyQuery(new Term("field", "aaaaccc"), 0.5f, 1);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(1, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaaaa"));
query = new FuzzyQuery(new Term("field", "aaaaccc"), FuzzyQuery.defaultMinSimilarity, 4);
query = new FuzzyQuery(new Term("field", "aaaaccc"), 0.5f, 4);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(1, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaaaa"));
query = new FuzzyQuery(new Term("field", "aaaaccc"), FuzzyQuery.defaultMinSimilarity, 5);
query = new FuzzyQuery(new Term("field", "aaaaccc"), 0.5f, 5);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(0, hits.length);
// no match, more than half of the characters is wrong:
query = new FuzzyQuery(new Term("field", "aaacccc"), FuzzyQuery.defaultMinSimilarity, 0);
query = new FuzzyQuery(new Term("field", "aaacccc"), 0.5f, 0);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(0, hits.length);
// now with prefix
query = new FuzzyQuery(new Term("field", "aaacccc"), FuzzyQuery.defaultMinSimilarity, 2);
query = new FuzzyQuery(new Term("field", "aaacccc"), 0.5f, 2);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(0, hits.length);
// "student" and "stellent" are indeed similar to "segment" by default:
query = new FuzzyQuery(new Term("field", "student"), FuzzyQuery.defaultMinSimilarity, 0);
query = new FuzzyQuery(new Term("field", "student"), 0.5f, 0);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(1, hits.length);
query = new FuzzyQuery(new Term("field", "stellent"), FuzzyQuery.defaultMinSimilarity, 0);
query = new FuzzyQuery(new Term("field", "stellent"), 0.5f, 0);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(1, hits.length);
// now with prefix
query = new FuzzyQuery(new Term("field", "student"), FuzzyQuery.defaultMinSimilarity, 1);
query = new FuzzyQuery(new Term("field", "student"), 0.5f, 1);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(1, hits.length);
query = new FuzzyQuery(new Term("field", "stellent"), FuzzyQuery.defaultMinSimilarity, 1);
query = new FuzzyQuery(new Term("field", "stellent"), 0.5f, 1);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(1, hits.length);
query = new FuzzyQuery(new Term("field", "student"), FuzzyQuery.defaultMinSimilarity, 2);
query = new FuzzyQuery(new Term("field", "student"), 0.5f, 2);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(0, hits.length);
query = new FuzzyQuery(new Term("field", "stellent"), FuzzyQuery.defaultMinSimilarity, 2);
query = new FuzzyQuery(new Term("field", "stellent"), 0.5f, 2);
hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(0, hits.length);
@ -328,7 +328,7 @@ public class TestFuzzyQuery extends LuceneTestCase {
IndexSearcher searcher = new IndexSearcher(reader);
writer.close();
FuzzyQuery query = new FuzzyQuery(new Term("field", "Lucene"));
FuzzyQuery query = new FuzzyQuery(new Term("field", "lucene"));
query.setRewriteMethod(new MultiTermQuery.TopTermsBoostOnlyBooleanQueryRewrite());
ScoreDoc[] hits = searcher.search(query, null, 1000).scoreDocs;
assertEquals(3, hits.length);
@ -378,6 +378,54 @@ public class TestFuzzyQuery extends LuceneTestCase {
r.close();
index.close();
}
public void testDistanceAsEditsParsing() throws Exception {
QueryParser qp = new QueryParser(TEST_VERSION_CURRENT, "field", new MockAnalyzer());
FuzzyQuery q = (FuzzyQuery) qp.parse("foobar~2");
assertEquals(2f, q.getMinSimilarity(), 0.0001f);
}
public void testDistanceAsEditsSearching() throws Exception {
Directory index = newDirectory();
RandomIndexWriter w = new RandomIndexWriter(random, index);
addDoc("foobar", w);
addDoc("test", w);
addDoc("working", w);
IndexReader reader = w.getReader();
IndexSearcher searcher = new IndexSearcher(reader);
w.close();
QueryParser qp = new QueryParser(TEST_VERSION_CURRENT, "field", new MockAnalyzer());
FuzzyQuery q = (FuzzyQuery) qp.parse("fouba~2");
ScoreDoc[] hits = searcher.search(q, 10).scoreDocs;
assertEquals(1, hits.length);
assertEquals("foobar", searcher.doc(hits[0].doc).get("field"));
q = (FuzzyQuery) qp.parse("foubara~2");
hits = searcher.search(q, 10).scoreDocs;
assertEquals(1, hits.length);
assertEquals("foobar", searcher.doc(hits[0].doc).get("field"));
q = (FuzzyQuery) qp.parse("t~3");
hits = searcher.search(q, 10).scoreDocs;
assertEquals(1, hits.length);
assertEquals("test", searcher.doc(hits[0].doc).get("field"));
q = new FuzzyQuery(new Term("field", "a"), 4f, 0, 50);
hits = searcher.search(q, 10).scoreDocs;
assertEquals(1, hits.length);
assertEquals("test", searcher.doc(hits[0].doc).get("field"));
q = new FuzzyQuery(new Term("field", "a"), 6f, 0, 50);
hits = searcher.search(q, 10).scoreDocs;
assertEquals(2, hits.length);
assertEquals("test", searcher.doc(hits[0].doc).get("field"));
assertEquals("foobar", searcher.doc(hits[1].doc).get("field"));
searcher.close();
reader.close();
index.close();
}
private void addDoc(String text, RandomIndexWriter writer) throws IOException {
Document doc = new Document();