LUCENE-5476: add RandomSamplingFacetsCollector

git-svn-id: https://svn.apache.org/repos/asf/lucene/dev/trunk@1579594 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Shai Erera 2014-03-20 11:30:31 +00:00
parent a2e34dd518
commit e50b392f46
3 changed files with 409 additions and 0 deletions

View File

@ -115,6 +115,10 @@ New Features
* LUCENE-4072: Add ICUNormalizer2CharFilter, which lets you do unicode normalization
with offset correction before the tokenizer. (David Goldfarb, Ippei UKAI via Robert Muir)
* LUCENE-5476: Add RandomSamplingFacetsCollector for computing facets on a sampled
set of matching hits, in cases where there are millions of hits.
(Rob Audenaerde, Gilad Barkai, Shai Erera)
API Changes
* LUCENE-5454: Add RandomAccessOrds, an optional extension of SortedSetDocValues

View File

@ -0,0 +1,264 @@
package org.apache.lucene.facet;
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.lucene.facet.FacetsConfig.DimConfig;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.util.FixedBitSet;
/**
* Collects hits for subsequent faceting, using sampling if needed. Once you've
* run a search and collect hits into this, instantiate one of the
* {@link Facets} subclasses to do the facet counting. Note that this collector
* does not collect the scores of matching docs (i.e.
* {@link FacetsCollector.MatchingDocs#scores}) is {@code null}.
* <p>
* If you require the original set of hits, you can call
* {@link #getOriginalMatchingDocs()}. Also, since the counts of the top-facets
* is based on the sampled set, you can amortize the counts by calling
* {@link #amortizeFacetCounts}.
*/
public class RandomSamplingFacetsCollector extends FacetsCollector {
/**
* Faster alternative for java.util.Random, inspired by
* http://dmurphy747.wordpress.com/2011/03/23/xorshift-vs-random-
* performance-in-java/
* <p>
* Has a period of 2^64-1
*/
private static class XORShift64Random {
private long x;
/** Creates a xorshift random generator using the provided seed */
public XORShift64Random(long seed) {
x = seed == 0 ? 0xdeadbeef : seed;
}
/** Get the next random long value */
public long randomLong() {
x ^= (x << 21);
x ^= (x >>> 35);
x ^= (x << 4);
return x;
}
/** Get the next random int, between 0 (inclusive) and n (exclusive) */
public int nextInt(int n) {
int res = (int) (randomLong() % n);
return (res < 0) ? -res : res;
}
}
private final static int NOT_CALCULATED = -1;
private final int sampleSize;
private final XORShift64Random random;
private double samplingRate;
private List<MatchingDocs> sampledDocs;
private int totalHits = NOT_CALCULATED;
private int leftoverBin = NOT_CALCULATED;
private int leftoverIndex = NOT_CALCULATED;
/**
* Constructor with the given sample size and default seed.
*
* @see #RandomSamplingFacetsCollector(int, long)
*/
public RandomSamplingFacetsCollector(int sampleSize) {
this(sampleSize, 0);
}
/**
* Constructor with the given sample size and seed.
*
* @param sampleSize
* The preferred sample size. If the number of hits is greater than
* the size, sampling will be done using a sample ratio of sampling
* size / totalN. For example: 1000 hits, sample size = 10 results in
* samplingRatio of 0.01. If the number of hits is lower, no sampling
* is done at all
* @param seed
* The random seed. If {@code 0} then a seed will be chosen for you.
*/
public RandomSamplingFacetsCollector(int sampleSize, long seed) {
super(false);
this.sampleSize = sampleSize;
this.random = new XORShift64Random(seed);
this.sampledDocs = null;
}
/**
* Returns the sampled list of the matching documents. Note that a
* {@link FacetsCollector.MatchingDocs} instance is returned per segment, even
* if no hits from that segment are included in the sampled set.
* <p>
* Note: One or more of the MatchingDocs might be empty (not containing any
* hits) as result of sampling.
* <p>
* Note: {@code MatchingDocs.totalHits} is copied from the original
* MatchingDocs, scores is set to {@code null}
*/
@Override
public List<MatchingDocs> getMatchingDocs() {
List<MatchingDocs> matchingDocs = super.getMatchingDocs();
if (totalHits == NOT_CALCULATED) {
totalHits = 0;
for (MatchingDocs md : matchingDocs) {
totalHits += md.totalHits;
}
}
if (totalHits <= sampleSize) {
return matchingDocs;
}
if (sampledDocs == null) {
samplingRate = (1.0 * sampleSize) / totalHits;
sampledDocs = createSampledDocs(matchingDocs);
}
return sampledDocs;
}
/** Returns the original matching documents. */
public List<MatchingDocs> getOriginalMatchingDocs() {
return super.getMatchingDocs();
}
/** Create a sampled copy of the matching documents list. */
private List<MatchingDocs> createSampledDocs(List<MatchingDocs> matchingDocsList) {
List<MatchingDocs> sampledDocsList = new ArrayList<MatchingDocs>(matchingDocsList.size());
for (MatchingDocs docs : matchingDocsList) {
sampledDocsList.add(createSample(docs));
}
return sampledDocsList;
}
/** Create a sampled of the given hits. */
private MatchingDocs createSample(MatchingDocs docs) {
int maxdoc = docs.context.reader().maxDoc();
// TODO: we could try the WAH8DocIdSet here as well, as the results will be sparse
FixedBitSet sampleDocs = new FixedBitSet(maxdoc);
int binSize = (int) (1.0 / samplingRate);
try {
int counter = 0;
int limit, randomIndex;
if (leftoverBin != NOT_CALCULATED) {
limit = leftoverBin;
// either NOT_CALCULATED, which means we already sampled from that bin,
// or the next document to sample
randomIndex = leftoverIndex;
} else {
limit = binSize;
randomIndex = random.nextInt(binSize);
}
final DocIdSetIterator it = docs.bits.iterator();
for (int doc = it.nextDoc(); doc != DocIdSetIterator.NO_MORE_DOCS; doc = it.nextDoc()) {
if (counter == randomIndex) {
sampleDocs.set(doc);
}
counter++;
if (counter >= limit) {
counter = 0;
limit = binSize;
randomIndex = random.nextInt(binSize);
}
}
if (counter == 0) {
// we either exhausted the bin and the iterator at the same time, or
// this segment had no results. in the latter case we might want to
// carry leftover to the next segment as is, but that complicates the
// code and doesn't seem so important.
leftoverBin = leftoverIndex = NOT_CALCULATED;
} else {
leftoverBin = limit - counter;
if (randomIndex > counter) {
// the document to sample is in the next bin
leftoverIndex = randomIndex - counter;
} else if (randomIndex < counter) {
// we sampled a document from the bin, so just skip over remaining
// documents in the bin in the next segment.
leftoverIndex = NOT_CALCULATED;
}
}
return new MatchingDocs(docs.context, sampleDocs, docs.totalHits, null);
} catch (IOException e) {
throw new RuntimeException();
}
}
/**
* Note: if you use a counting {@link Facets} implementation, you can amortize the
* sampled counts by calling this method. Uses the {@link FacetsConfig} and
* the {@link IndexSearcher} to determine the upper bound for each facet value.
*/
public FacetResult amortizeFacetCounts(FacetResult res, FacetsConfig config, IndexSearcher searcher) throws IOException {
if (res == null || totalHits <= sampleSize) {
return res;
}
LabelAndValue[] fixedLabelValues = new LabelAndValue[res.labelValues.length];
IndexReader reader = searcher.getIndexReader();
DimConfig dimConfig = config.getDimConfig(res.dim);
// +2 to prepend dimension, append child label
String[] childPath = new String[res.path.length + 2];
childPath[0] = res.dim;
System.arraycopy(res.path, 0, childPath, 1, res.path.length); // reuse
for (int i = 0; i < res.labelValues.length; i++) {
childPath[res.path.length + 1] = res.labelValues[i].label;
String fullPath = FacetsConfig.pathToString(childPath, childPath.length);
int max = reader.docFreq(new Term(dimConfig.indexFieldName, fullPath));
int correctedCount = (int) (res.labelValues[i].value.doubleValue() / samplingRate);
correctedCount = Math.min(max, correctedCount);
fixedLabelValues[i] = new LabelAndValue(res.labelValues[i].label, correctedCount);
}
// cap the total count on the total number of non-deleted documents in the reader
int correctedTotalCount = res.value.intValue();
if (correctedTotalCount > 0) {
correctedTotalCount = Math.min(reader.numDocs(), (int) (res.value.doubleValue() / samplingRate));
}
return new FacetResult(res.dim, res.path, correctedTotalCount, fixedLabelValues, res.childCount);
}
/** Returns the sampling rate that was used. */
public double getSamplingRate() {
return samplingRate;
}
}

View File

@ -0,0 +1,141 @@
package org.apache.lucene.facet;
import java.util.Random;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.document.StringField;
import org.apache.lucene.facet.FacetsCollector.MatchingDocs;
import org.apache.lucene.facet.taxonomy.FastTaxonomyFacetCounts;
import org.apache.lucene.facet.taxonomy.TaxonomyReader;
import org.apache.lucene.facet.taxonomy.directory.DirectoryTaxonomyReader;
import org.apache.lucene.facet.taxonomy.directory.DirectoryTaxonomyWriter;
import org.apache.lucene.index.RandomIndexWriter;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.MultiCollector;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.store.Directory;
import org.apache.lucene.util.IOUtils;
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
public class TestRandomSamplingFacetsCollector extends FacetTestCase {
public void testRandomSampling() throws Exception {
Directory dir = newDirectory();
Directory taxoDir = newDirectory();
DirectoryTaxonomyWriter taxoWriter = new DirectoryTaxonomyWriter(taxoDir);
RandomIndexWriter writer = new RandomIndexWriter(random(), dir);
FacetsConfig config = new FacetsConfig();
int numDocs = atLeast(10000);
for (int i = 0; i < numDocs; i++) {
Document doc = new Document();
doc.add(new StringField("EvenOdd", (i % 2 == 0) ? "even" : "odd", Store.NO));
doc.add(new FacetField("iMod10", String.valueOf(i % 10)));
writer.addDocument(config.build(taxoWriter, doc));
}
Random random = random();
// NRT open
IndexSearcher searcher = newSearcher(writer.getReader());
TaxonomyReader taxoReader = new DirectoryTaxonomyReader(taxoWriter);
IOUtils.close(writer, taxoWriter);
// Test empty results
RandomSamplingFacetsCollector collectRandomZeroResults = new RandomSamplingFacetsCollector(numDocs / 10, random.nextLong());
// There should be no divisions by zero
searcher.search(new TermQuery(new Term("EvenOdd", "NeverMatches")), collectRandomZeroResults);
// There should be no divisions by zero and no null result
assertNotNull(collectRandomZeroResults.getMatchingDocs());
// There should be no results at all
for (MatchingDocs doc : collectRandomZeroResults.getMatchingDocs()) {
assertEquals(0, doc.totalHits);
}
// Now start searching and retrieve results.
// Use a query to select half of the documents.
TermQuery query = new TermQuery(new Term("EvenOdd", "even"));
// there will be 5 facet values (0, 2, 4, 6 and 8), as only the even (i %
// 10) are hits.
// there is a REAL small chance that one of the 5 values will be missed when
// sampling.
// but is that 0.8 (chance not to take a value) ^ 2000 * 5 (any can be
// missing) ~ 10^-193
// so that is probably not going to happen.
int maxNumChildren = 5;
RandomSamplingFacetsCollector random100Percent = new RandomSamplingFacetsCollector(numDocs, random.nextLong()); // no sampling
RandomSamplingFacetsCollector random10Percent = new RandomSamplingFacetsCollector(numDocs / 10, random.nextLong()); // 10 % of total docs, 20% of the hits
FacetsCollector fc = new FacetsCollector();
searcher.search(query, MultiCollector.wrap(fc, random100Percent, random10Percent));
FastTaxonomyFacetCounts random10FacetCounts = new FastTaxonomyFacetCounts(taxoReader, config, random10Percent);
FastTaxonomyFacetCounts random100FacetCounts = new FastTaxonomyFacetCounts(taxoReader, config, random100Percent);
FastTaxonomyFacetCounts exactFacetCounts = new FastTaxonomyFacetCounts(taxoReader, config, fc);
FacetResult random10Result = random10Percent.amortizeFacetCounts(random10FacetCounts.getTopChildren(10, "iMod10"), config, searcher);
FacetResult random100Result = random100FacetCounts.getTopChildren(10, "iMod10");
FacetResult exactResult = exactFacetCounts.getTopChildren(10, "iMod10");
assertEquals(random100Result, exactResult);
// we should have five children, but there is a small chance we have less.
// (see above).
assertTrue(random10Result.childCount <= maxNumChildren);
// there should be one child at least.
assertTrue(random10Result.childCount >= 1);
// now calculate some statistics to determine if the sampled result is 'ok'.
// because random sampling is used, the results will vary each time.
int sum = 0;
for (LabelAndValue lav : random10Result.labelValues) {
sum += lav.value.intValue();
}
float mu = (float) sum / (float) maxNumChildren;
float variance = 0;
for (LabelAndValue lav : random10Result.labelValues) {
variance += Math.pow((mu - lav.value.intValue()), 2);
}
variance = variance / maxNumChildren;
float sigma = (float) Math.sqrt(variance);
// we query only half the documents and have 5 categories. The average
// number of docs in a category will thus be the total divided by 5*2
float targetMu = numDocs / (5.0f * 2.0f);
// the average should be in the range and the standard deviation should not
// be too great
assertTrue(sigma < 200);
assertTrue(targetMu - 3 * sigma < mu && mu < targetMu + 3 * sigma);
IOUtils.close(searcher.getIndexReader(), taxoReader, dir, taxoDir);
}
}