initial files

This commit is contained in:
Vigya Sharma 2024-11-04 19:05:52 -08:00
parent 6fe8165cac
commit f1c73528fd
2 changed files with 254 additions and 0 deletions

View File

@ -0,0 +1,45 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.index;
/** Defines comparison functions for multi-vector similarity */
public interface MultiVectorSimilarity {
/**
* Calculates a similarity score between the two multi-vectors with a specified function. Higher
* similarity scores correspond to closer vectors.
*
* @param t1 a multi-vector with non-empty vectors All vector values are concatenated in a single
* packed array.
* @param t2 another multi-vector, vectors of the same dimension as t1. All vector values are
* concatenated in a single packed array.
* @return the value of the similarity function applied to the two multi-vectors
*/
float compare(float[] t1, float[] t2, int dimension);
/**
* Calculates a similarity score between the two multi-vectors with a specified function. Higher
* similarity scores correspond to closer vectors.
*
* @param t1 a multi-vector with non-empty vectors. All vector values are concatenated in a single
* packed array.
* @param t2 another multi-vector, vectors of the same dimension as t1. All vector values are
* concatenated in a single packed array.
* @return the value of the similarity function applied to the two multi-vector
*/
float compare(byte[] t1, byte[] t2, int dimension);
}

View File

@ -0,0 +1,209 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.index;
import java.util.ArrayList;
import java.util.List;
import org.apache.lucene.util.ArrayUtil;
/**
* Multi-vector similarity function; used in search to return top K most similar multi-vectors to a
* target multi-vector. This method is used during indexing and searching of the multi-vectors in
* order to determine the nearest neighbors.
*/
// no commit
public class MultiVectorSimilarityFunction implements MultiVectorSimilarity {
/** Aggregation function to combine similarity across multiple vector values */
public enum Aggregation {
/** Placeholder aggregation that is not intended to be used. */
NONE {
@Override
public float aggregate(
float[] outer,
float[] inner,
VectorSimilarityFunction vectorSimilarityFunction,
int dimension) {
throw new UnsupportedOperationException();
}
@Override
public float aggregate(
byte[] outer,
byte[] inner,
VectorSimilarityFunction vectorSimilarityFunction,
int dimension) {
throw new UnsupportedOperationException();
}
},
/**
* SumMaxSimilarity between two multi-vectors. Aggregates using the sum of maximum similarity
* found for each vector in the first multi-vector against all vectors in the second
* multi-vector.
*/
SUM_MAX {
@Override
public float aggregate(
float[] outer,
float[] inner,
VectorSimilarityFunction vectorSimilarityFunction,
int dimension) {
if (outer.length % dimension != 0 || inner.length % dimension != 0) {
throw new IllegalArgumentException("Multi vectors do not match provided dimensions");
}
// TODO: can we avoid making vector copies?
List<float[]> outerList = new ArrayList<>();
List<float[]> innerList = new ArrayList<>();
for (int i = 0; i < outer.length; i += dimension) {
// System.out.println("copy subArray - " + i + ":" + i+dimension);
outerList.add(ArrayUtil.copyOfSubArray(outer, i, i + dimension));
}
for (int i = 0; i < inner.length; i += dimension) {
// System.out.println("copy subArray - " + i + ":" + i+dimension);
innerList.add(ArrayUtil.copyOfSubArray(inner, i, i + dimension));
}
float result = 0f;
for (float[] o : outerList) {
float maxSim = Float.MIN_VALUE;
for (float[] i : innerList) {
maxSim = Float.max(maxSim, vectorSimilarityFunction.compare(o, i));
}
result += maxSim;
}
return result;
}
@Override
public float aggregate(
byte[] outer,
byte[] inner,
VectorSimilarityFunction vectorSimilarityFunction,
int dimension) {
if (outer.length % dimension != 0 || inner.length % dimension != 0) {
throw new IllegalArgumentException("Multi vectors do not match provided dimensions");
}
List<byte[]> outerList = new ArrayList<>();
List<byte[]> innerList = new ArrayList<>();
// System.out.println("...handling outer list");
for (int i = 0; i < outer.length; i += dimension) {
// System.out.println("copy subArray - " + i + ":" + dimension);
outerList.add(ArrayUtil.copyOfSubArray(outer, i, i + dimension));
}
// System.out.println("...handling inner list");
for (int i = 0; i < inner.length; i += dimension) {
// System.out.println("copy subArray - " + i + ":" + dimension);
innerList.add(ArrayUtil.copyOfSubArray(inner, i, i + dimension));
}
float result = 0f;
for (byte[] o : outerList) {
float maxSim = Float.MIN_VALUE;
for (byte[] i : innerList) {
maxSim = Float.max(maxSim, vectorSimilarityFunction.compare(o, i));
}
result += maxSim;
}
return result;
}
};
/**
* Computes and aggregates similarity over multiple vector values
*
* @param outer first multi-vector
* @param inner second multi-vector
* @param vectorSimilarityFunction distance function for vector proximity
* @param dimension dimension for each vector value in the multi-vector
* @return similarity between the two multi-vectors
*/
public abstract float aggregate(
float[] outer,
float[] inner,
VectorSimilarityFunction vectorSimilarityFunction,
int dimension);
/**
* Computes and aggregates similarity over multiple vector values
*
* @param outer first multi-vector
* @param inner second multi-vector
* @param vectorSimilarityFunction distance function for vector proximity
* @param dimension dimension for each vector value in the multi-vector
* @return similarity between the two multi-vectors
*/
public abstract float aggregate(
byte[] outer,
byte[] inner,
VectorSimilarityFunction vectorSimilarityFunction,
int dimension);
}
/** Similarity function used for multi-vector distance calculations */
public final VectorSimilarityFunction similarityFunction;
/** Aggregation function to combine similarity across multiple vector values */
public final Aggregation aggregation;
/**
* Similarity function for computing distance between multi-vector values
*
* @param similarityFunction {@link VectorSimilarityFunction} for computing vector proximity
* @param aggregation {@link Aggregation} to combine similarity across multiple vector values
*/
public MultiVectorSimilarityFunction(
VectorSimilarityFunction similarityFunction, Aggregation aggregation) {
this.similarityFunction = similarityFunction;
this.aggregation = aggregation;
}
@Override
public float compare(float[] t1, float[] t2, int dimension) {
return aggregation.aggregate(t1, t2, similarityFunction, dimension);
}
@Override
public float compare(byte[] t1, byte[] t2, int dimension) {
return aggregation.aggregate(t1, t2, similarityFunction, dimension);
}
@Override
public boolean equals(Object obj) {
if (obj instanceof MultiVectorSimilarityFunction == false) {
return false;
}
MultiVectorSimilarityFunction o = (MultiVectorSimilarityFunction) obj;
return this.similarityFunction == o.similarityFunction && this.aggregation == o.aggregation;
}
@Override
public int hashCode() {
int result = Integer.hashCode(similarityFunction.ordinal());
result = 31 * result + Integer.hashCode(aggregation.ordinal());
return result;
}
@Override
public String toString() {
return "MultiVectorSimilarityFunction(similarity="
+ similarityFunction
+ ", aggregation="
+ aggregation
+ ")";
}
}