More robust logic for picking the intersection point and path

This commit is contained in:
Karl Wright 2016-04-27 13:54:28 -04:00
parent f9a4a08ce0
commit f56e93128b
3 changed files with 188 additions and 74 deletions

View File

@ -35,9 +35,9 @@ import java.util.Map;
*/
class GeoComplexPolygon extends GeoBasePolygon {
private final XTree xTree = new XTree();
private final YTree yTree = new YTree();
private final ZTree zTree = new ZTree();
private final Tree xTree = new XTree();
private final Tree yTree = new YTree();
private final Tree zTree = new ZTree();
private final boolean testPointInSet;
private final GeoPoint testPoint;
@ -125,11 +125,6 @@ class GeoComplexPolygon extends GeoBasePolygon {
return testPointInSet;
}
// Choose our navigation route!
final double xDelta = Math.abs(thePoint.x - testPoint.x);
final double yDelta = Math.abs(thePoint.y - testPoint.y);
final double zDelta = Math.abs(thePoint.z - testPoint.z);
// If we're right on top of any of the test planes, we navigate solely on that plane.
if (testPointXZPlane.evaluateIsZero(thePoint)) {
// Use the XZ plane exclusively.
@ -160,50 +155,141 @@ class GeoComplexPolygon extends GeoBasePolygon {
return ((crossingEdgeIterator.crossingCount & 1) == 0)?testPointInSet:!testPointInSet;
} else {
// We need to use two planes to get there. We can use any two planes, and order doesn't matter.
// The best to pick are the ones with the shortest overall distance.
if (xDelta + yDelta <= xDelta + zDelta && xDelta + yDelta <= yDelta + zDelta) {
// Travel in X and Y
// We'll do this using the testPointYZPlane, and create a travel plane for the right XZ plane.
final Plane travelPlane = new Plane(0.0, 1.0, 0.0, -thePoint.y);
final DualCrossingEdgeIterator edgeIterator = new DualCrossingEdgeIterator(testPointYZPlane, testPointYZAbovePlane, testPointYZBelowPlane, travelPlane, testPoint, thePoint);
if (!xTree.traverse(edgeIterator, testPoint.x, testPoint.x)) {
return true;
// We need to use two planes to get there. We don't know which two planes will do it but we can figure it out.
final Plane travelPlaneFixedX = new Plane(1.0, 0.0, 0.0, -thePoint.x);
final Plane travelPlaneFixedY = new Plane(0.0, 1.0, 0.0, -thePoint.y);
final Plane travelPlaneFixedZ = new Plane(0.0, 0.0, 1.0, -thePoint.z);
// Find the intersection points for each one of these and the complementary test point planes.
final GeoPoint[] XZIntersectionsYZ = travelPlaneFixedX.findIntersections(planetModel, testPointYZPlane);
final GeoPoint[] XZIntersectionsXY = travelPlaneFixedX.findIntersections(planetModel, testPointXYPlane);
final GeoPoint[] YZIntersectionsXZ = travelPlaneFixedY.findIntersections(planetModel, testPointXZPlane);
final GeoPoint[] YZIntersectionsXY = travelPlaneFixedY.findIntersections(planetModel, testPointXYPlane);
final GeoPoint[] XYIntersectionsYZ = travelPlaneFixedZ.findIntersections(planetModel, testPointYZPlane);
final GeoPoint[] XYIntersectionsXZ = travelPlaneFixedZ.findIntersections(planetModel, testPointXZPlane);
// There will be multiple intersection points found. We choose the one that has the lowest total distance, as measured in delta X, delta Y, and delta Z.
double bestDistance = Double.MAX_VALUE;
double firstLegValue = 0.0;
double secondLegValue = 0.0;
Plane firstLegPlane = null;
Plane firstLegAbovePlane = null;
Plane firstLegBelowPlane = null;
Plane secondLegPlane = null;
Tree firstLegTree = null;
Tree secondLegTree = null;
GeoPoint intersectionPoint = null;
for (final GeoPoint p : XZIntersectionsYZ) {
// Travel would be in XZ plane (fixed y) then in YZ (fixed x)
final double newDistance = Math.abs(thePoint.x - p.x) + Math.abs(testPoint.y - p.y);
if (newDistance < bestDistance) {
bestDistance = newDistance;
firstLegValue = testPoint.y;
secondLegValue = thePoint.x;
firstLegPlane = testPointYZPlane;
firstLegAbovePlane = testPointYZAbovePlane;
firstLegBelowPlane = testPointYZBelowPlane;
secondLegPlane = travelPlaneFixedX;
firstLegTree = xTree;
secondLegTree = yTree;
intersectionPoint = p;
}
edgeIterator.setSecondLeg();
if (!yTree.traverse(edgeIterator, thePoint.y, thePoint.y)) {
return true;
}
return ((edgeIterator.crossingCount & 1) == 0)?testPointInSet:!testPointInSet;
} else if (xDelta + zDelta <= xDelta + yDelta && xDelta + zDelta <= zDelta + yDelta) {
// Travel in X and Z
// We'll do this using the testPointXYPlane, and create a travel plane for the right YZ plane.
final Plane travelPlane = new Plane(1.0, 0.0, 0.0, -thePoint.x);
final DualCrossingEdgeIterator edgeIterator = new DualCrossingEdgeIterator(testPointXYPlane, testPointXYAbovePlane, testPointXYBelowPlane, travelPlane, testPoint, thePoint);
if (!zTree.traverse(edgeIterator, testPoint.z, testPoint.z)) {
return true;
}
edgeIterator.setSecondLeg();
if (!xTree.traverse(edgeIterator, thePoint.x, thePoint.x)) {
return true;
}
return ((edgeIterator.crossingCount & 1) == 0)?testPointInSet:!testPointInSet;
} else if (yDelta + zDelta <= xDelta + yDelta && yDelta + zDelta <= xDelta + zDelta) {
// Travel in Y and Z
// We'll do this using the testPointXZPlane, and create a travel plane for the right XY plane.
final Plane travelPlane = new Plane(0.0, 0.0, 1.0, -thePoint.z);
final DualCrossingEdgeIterator edgeIterator = new DualCrossingEdgeIterator(testPointXZPlane, testPointXZAbovePlane, testPointXZBelowPlane, travelPlane, testPoint, thePoint);
if (!yTree.traverse(edgeIterator, testPoint.y, testPoint.y)) {
return true;
}
edgeIterator.setSecondLeg();
if (!zTree.traverse(edgeIterator, thePoint.z, thePoint.z)) {
return true;
}
return ((edgeIterator.crossingCount & 1) == 0)?testPointInSet:!testPointInSet;
}
for (final GeoPoint p : XZIntersectionsXY) {
// Travel would be in XZ plane (fixed y) then in XY (fixed z)
final double newDistance = Math.abs(thePoint.z - p.z) + Math.abs(testPoint.y - p.y);
if (newDistance < bestDistance) {
bestDistance = newDistance;
firstLegValue = testPoint.y;
secondLegValue = thePoint.z;
firstLegPlane = testPointXYPlane;
firstLegAbovePlane = testPointXYAbovePlane;
firstLegBelowPlane = testPointXYBelowPlane;
secondLegPlane = travelPlaneFixedX;
firstLegTree = yTree;
secondLegTree = zTree;
intersectionPoint = p;
}
}
for (final GeoPoint p : YZIntersectionsXZ) {
// Travel would be in YZ plane (fixed x) then in XZ (fixed y)
final double newDistance = Math.abs(thePoint.y - p.y) + Math.abs(testPoint.x - p.x);
if (newDistance < bestDistance) {
bestDistance = newDistance;
firstLegValue = testPoint.x;
secondLegValue = thePoint.y;
firstLegPlane = testPointXZPlane;
firstLegAbovePlane = testPointXZAbovePlane;
firstLegBelowPlane = testPointXZBelowPlane;
secondLegPlane = travelPlaneFixedY;
firstLegTree = xTree;
secondLegTree = yTree;
intersectionPoint = p;
}
}
for (final GeoPoint p : YZIntersectionsXY) {
// Travel would be in YZ plane (fixed x) then in XY (fixed z)
final double newDistance = Math.abs(thePoint.z - p.z) + Math.abs(testPoint.x - p.x);
if (newDistance < bestDistance) {
bestDistance = newDistance;
firstLegValue = testPoint.x;
secondLegValue = thePoint.z;
firstLegPlane = testPointXYPlane;
firstLegAbovePlane = testPointXYAbovePlane;
firstLegBelowPlane = testPointXYBelowPlane;
secondLegPlane = travelPlaneFixedX;
firstLegTree = xTree;
secondLegTree = zTree;
intersectionPoint = p;
}
}
for (final GeoPoint p : XYIntersectionsYZ) {
// Travel would be in XY plane (fixed z) then in YZ (fixed x)
final double newDistance = Math.abs(thePoint.x - p.x) + Math.abs(testPoint.z - p.z);
if (newDistance < bestDistance) {
bestDistance = newDistance;
firstLegValue = testPoint.z;
secondLegValue = thePoint.x;
firstLegPlane = testPointYZPlane;
firstLegAbovePlane = testPointYZAbovePlane;
firstLegBelowPlane = testPointYZBelowPlane;
secondLegPlane = travelPlaneFixedZ;
firstLegTree = zTree;
secondLegTree = xTree;
intersectionPoint = p;
}
}
for (final GeoPoint p : XYIntersectionsXZ) {
// Travel would be in XY plane (fixed z) then in XZ (fixed y)
final double newDistance = Math.abs(thePoint.y - p.y) + Math.abs(testPoint.z - p.z);
if (newDistance < bestDistance) {
bestDistance = newDistance;
firstLegValue = testPoint.z;
secondLegValue = thePoint.y;
firstLegPlane = testPointXZPlane;
firstLegAbovePlane = testPointXZAbovePlane;
firstLegBelowPlane = testPointXZBelowPlane;
secondLegPlane = travelPlaneFixedZ;
firstLegTree = zTree;
secondLegTree = yTree;
intersectionPoint = p;
}
}
assert bestDistance < Double.MAX_VALUE : "Couldn't find an intersection point of any kind";
final DualCrossingEdgeIterator edgeIterator = new DualCrossingEdgeIterator(firstLegPlane, firstLegAbovePlane, firstLegBelowPlane, secondLegPlane, testPoint, thePoint, intersectionPoint);
if (!firstLegTree.traverse(edgeIterator, firstLegValue, firstLegValue)) {
return true;
}
edgeIterator.setSecondLeg();
if (!secondLegTree.traverse(edgeIterator, secondLegValue, secondLegValue)) {
return true;
}
return ((edgeIterator.crossingCount & 1) == 0)?testPointInSet:!testPointInSet;
}
return false;
}
@Override
@ -298,6 +384,8 @@ class GeoComplexPolygon extends GeoBasePolygon {
this.startPlane = new SidedPlane(endPoint, plane, startPoint);
this.endPlane = new SidedPlane(startPoint, plane, endPoint);
this.planeBounds = new XYZBounds();
this.planeBounds.addPoint(startPoint);
this.planeBounds.addPoint(endPoint);
this.plane.recordBounds(pm, this.planeBounds, this.startPlane, this.endPlane);
}
}
@ -372,25 +460,25 @@ class GeoComplexPolygon extends GeoBasePolygon {
public void add(final Edge newEdge, final AddComparator edgeComparator) {
Node currentNode = this;
while (true) {
final int result = edgeComparator.compare(edge, newEdge);
final int result = edgeComparator.compare(currentNode.edge, newEdge);
if (result < 0) {
if (lesser == null) {
lesser = new Node(newEdge);
if (currentNode.lesser == null) {
currentNode.lesser = new Node(newEdge);
return;
}
currentNode = lesser;
currentNode = currentNode.lesser;
} else if (result > 0) {
if (greater == null) {
greater = new Node(newEdge);
if (currentNode.greater == null) {
currentNode.greater = new Node(newEdge);
return;
}
currentNode = greater;
currentNode = currentNode.greater;
} else {
if (overlaps == null) {
overlaps = new Node(newEdge);
if (currentNode.overlaps == null) {
currentNode.overlaps = new Node(newEdge);
return;
}
currentNode = overlaps;
currentNode = currentNode.overlaps;
}
}
}
@ -400,28 +488,39 @@ class GeoComplexPolygon extends GeoBasePolygon {
while (currentNode != null) {
final int result = edgeComparator.compare(currentNode.edge, minValue, maxValue);
if (result < 0) {
currentNode = lesser;
currentNode = currentNode.lesser;
} else if (result > 0) {
currentNode = greater;
currentNode = currentNode.greater;
} else {
if (!edgeIterator.matches(edge)) {
if (!edgeIterator.matches(currentNode.edge)) {
return false;
}
currentNode = overlaps;
currentNode = currentNode.overlaps;
}
}
return true;
}
}
/** An interface describing a tree.
*/
private static interface Tree {
public void add(final Edge edge);
public boolean traverse(final EdgeIterator edgeIterator, final double minValue, final double maxValue);
}
/** This is the z-tree.
*/
private static class ZTree implements TraverseComparator, AddComparator {
private static class ZTree implements Tree, TraverseComparator, AddComparator {
public Node rootNode = null;
public ZTree() {
}
@Override
public void add(final Edge edge) {
if (rootNode == null) {
rootNode = new Node(edge);
@ -430,6 +529,7 @@ class GeoComplexPolygon extends GeoBasePolygon {
}
}
@Override
public boolean traverse(final EdgeIterator edgeIterator, final double minValue, final double maxValue) {
if (rootNode == null) {
return true;
@ -461,12 +561,13 @@ class GeoComplexPolygon extends GeoBasePolygon {
/** This is the y-tree.
*/
private static class YTree implements TraverseComparator, AddComparator {
private static class YTree implements Tree, TraverseComparator, AddComparator {
public Node rootNode = null;
public YTree() {
}
@Override
public void add(final Edge edge) {
if (rootNode == null) {
rootNode = new Node(edge);
@ -475,6 +576,7 @@ class GeoComplexPolygon extends GeoBasePolygon {
}
}
@Override
public boolean traverse(final EdgeIterator edgeIterator, final double minValue, final double maxValue) {
if (rootNode == null) {
return true;
@ -506,12 +608,13 @@ class GeoComplexPolygon extends GeoBasePolygon {
/** This is the x-tree.
*/
private static class XTree implements TraverseComparator, AddComparator {
private static class XTree implements Tree, TraverseComparator, AddComparator {
public Node rootNode = null;
public XTree() {
}
@Override
public void add(final Edge edge) {
if (rootNode == null) {
rootNode = new Node(edge);
@ -520,6 +623,7 @@ class GeoComplexPolygon extends GeoBasePolygon {
}
}
@Override
public boolean traverse(final EdgeIterator edgeIterator, final double minValue, final double maxValue) {
if (rootNode == null) {
return true;
@ -752,17 +856,15 @@ class GeoComplexPolygon extends GeoBasePolygon {
public int crossingCount = 0;
public DualCrossingEdgeIterator(final Plane testPointPlane, final Plane testPointAbovePlane, final Plane testPointBelowPlane,
final Plane travelPlane, final Vector testPoint, final Vector thePoint) {
final Plane travelPlane, final Vector testPoint, final Vector thePoint, final GeoPoint intersectionPoint) {
this.testPointPlane = testPointPlane;
this.travelPlane = travelPlane;
this.thePoint = thePoint;
this.intersectionPoint = intersectionPoint;
this.testPointCutoffPlane = new SidedPlane(thePoint, testPointPlane, testPoint);
this.checkPointCutoffPlane = new SidedPlane(testPoint, travelPlane, thePoint);
// Now, find the intersection of the check and test point planes.
final GeoPoint[] intersectionPoints = travelPlane.findIntersections(planetModel, testPointPlane, testPointCutoffPlane, checkPointCutoffPlane);
assert intersectionPoints != null : "couldn't find any intersections";
assert intersectionPoints.length != 1 : "wrong number of intersection points";
this.intersectionPoint = intersectionPoints[0];
this.testPointOtherCutoffPlane = new SidedPlane(testPoint, testPointPlane, intersectionPoint);
this.checkPointOtherCutoffPlane = new SidedPlane(thePoint, travelPlane, intersectionPoint);

View File

@ -124,6 +124,13 @@ public class GeoPolygonFactory {
/** The list of holes */
public final List<? extends PolygonDescription> holes;
/** Instantiate the polygon description.
* @param points is the list of points.
*/
public PolygonDescription(final List<? extends GeoPoint> points) {
this(points, new ArrayList<>());
}
/** Instantiate the polygon description.
* @param points is the list of points.
* @param holes is the list of holes.

View File

@ -84,9 +84,7 @@ public class GeoPolygonTest {
originalPoints.add(point1);
originalPoints.add(point3);
originalPoints.add(point4);
System.err.println("Before: "+originalPoints);
final List<GeoPoint> filteredPoints = GeoPolygonFactory.filterEdges(GeoPolygonFactory.filterPoints(originalPoints), 0.0);
System.err.println("After: "+filteredPoints);
assertEquals(3, filteredPoints.size());
assertEquals(point5, filteredPoints.get(0));
assertEquals(point1, filteredPoints.get(1));
@ -100,6 +98,7 @@ public class GeoPolygonTest {
GeoPolygon c;
GeoPoint gp;
List<GeoPoint> points;
List<GeoPolygonFactory.PolygonDescription> shapes;
// Points go counterclockwise, so
points = new ArrayList<GeoPoint>();
@ -115,6 +114,12 @@ public class GeoPolygonTest {
gp = new GeoPoint(PlanetModel.SPHERE, 0.0, -0.5);
assertTrue(!c.isWithin(gp));
shapes = new ArrayList<>();
shapes.add(new GeoPolygonFactory.PolygonDescription(points));
c = GeoPolygonFactory.makeLargeGeoPolygon(PlanetModel.SPHERE, shapes);
assertTrue(!c.isWithin(gp));
// Now, go clockwise
points = new ArrayList<GeoPoint>();
points.add(new GeoPoint(PlanetModel.SPHERE, 0.0, -0.4));