LUCENE-7439: clean up FuzzyQuery/FuzzyTermsEnum sources

This commit is contained in:
Mike McCandless 2016-09-12 17:23:24 -04:00
parent 541a8fa13d
commit faf3bc3134
10 changed files with 520 additions and 1339 deletions

View File

@ -31,7 +31,7 @@ import org.apache.lucene.util.automaton.LevenshteinAutomata;
* though you can explicitly choose classic Levenshtein by passing <code>false</code>
* to the <code>transpositions</code> parameter.
*
* <p>This query uses {@link MultiTermQuery.TopTermsScoringBooleanQueryRewrite}
* <p>This query uses {@link MultiTermQuery.TopTermsBlendedFreqScoringRewrite}
* as default. So terms will be collected and scored according to their
* edit distance. Only the top terms are used for building the {@link BooleanQuery}.
* It is not recommended to change the rewrite mode for fuzzy queries.

View File

@ -17,12 +17,7 @@
package org.apache.lucene.search;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.lucene.index.PostingsEnum;
import org.apache.lucene.index.FilteredTermsEnum;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermState;
import org.apache.lucene.index.Terms;
@ -35,10 +30,12 @@ import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.BytesRefBuilder;
import org.apache.lucene.util.UnicodeUtil;
import org.apache.lucene.util.automaton.Automaton;
import org.apache.lucene.util.automaton.ByteRunAutomaton;
import org.apache.lucene.util.automaton.CompiledAutomaton;
import org.apache.lucene.util.automaton.LevenshteinAutomata;
import java.io.IOException;
import java.util.Arrays;
/** Subclass of TermsEnum for enumerating all terms that are similar
* to the specified filter term.
*
@ -46,38 +43,46 @@ import org.apache.lucene.util.automaton.LevenshteinAutomata;
* {@link BytesRef#compareTo}. Each term in the enumeration is
* greater than all that precede it.</p>
*/
public class FuzzyTermsEnum extends TermsEnum {
public final class FuzzyTermsEnum extends TermsEnum {
// NOTE: we can't subclass FilteredTermsEnum here because we need to sometimes change actualEnum:
private TermsEnum actualEnum;
private BoostAttribute actualBoostAtt;
private final BoostAttribute boostAtt =
attributes().addAttribute(BoostAttribute.class);
// We use this to communicate the score (boost) of the current matched term we are on back to
// MultiTermQuery.TopTermsBlendedFreqScoringRewrite that is collecting the best (default 50) matched terms:
private final BoostAttribute boostAtt;
// MultiTermQuery.TopTermsBlendedFreqScoringRewrite tells us the worst boost still in its queue using this att,
// which we use to know when we can reduce the automaton from ed=2 to ed=1, or ed=0 if only single top term is collected:
private final MaxNonCompetitiveBoostAttribute maxBoostAtt;
// We use this to share the pre-built (once for the query) Levenshtein automata across segments:
private final LevenshteinAutomataAttribute dfaAtt;
private float bottom;
private BytesRef bottomTerm;
protected final float minSimilarity;
protected final float scale_factor;
protected final int termLength;
protected int maxEdits;
protected final boolean raw;
private final CompiledAutomaton automata[];
protected final Terms terms;
private final Term term;
protected final int termText[];
protected final int realPrefixLength;
private final boolean transpositions;
private BytesRef queuedBottom;
final int termLength;
// Maximum number of edits we will accept. This is either 2 or 1 (or, degenerately, 0) passed by the user originally,
// but as we collect terms, we can lower this (e.g. from 2 to 1) if we detect that the term queue is full, and all
// collected terms are ed=1:
private int maxEdits;
final Terms terms;
final Term term;
final int termText[];
final int realPrefixLength;
// True (the default, in FuzzyQuery) if a transposition should count as a single edit:
final boolean transpositions;
/**
* Constructor for enumeration of all terms from specified <code>reader</code> which share a prefix of
* length <code>prefixLength</code> with <code>term</code> and which have a fuzzy similarity &gt;
* <code>minSimilarity</code>.
* length <code>prefixLength</code> with <code>term</code> and which have at most {@code maxEdits} edits.
* <p>
* After calling the constructor the enumeration is already pointing to the first
* valid term if such a term exists.
@ -87,105 +92,88 @@ public class FuzzyTermsEnum extends TermsEnum {
* thats contains information about competitive boosts during rewrite. It is also used
* to cache DFAs between segment transitions.
* @param term Pattern term.
* @param minSimilarity Minimum required similarity for terms from the reader. Pass an integer value
* representing edit distance. Passing a fraction is deprecated.
* @param maxEdits Maximum edit distance.
* @param prefixLength Length of required common prefix. Default value is 0.
* @throws IOException if there is a low-level IO error
*/
public FuzzyTermsEnum(Terms terms, AttributeSource atts, Term term,
final float minSimilarity, final int prefixLength, boolean transpositions) throws IOException {
if (minSimilarity >= 1.0f && minSimilarity != (int)minSimilarity)
throw new IllegalArgumentException("fractional edit distances are not allowed");
if (minSimilarity < 0.0f)
throw new IllegalArgumentException("minimumSimilarity cannot be less than 0");
if(prefixLength < 0)
final int maxEdits, final int prefixLength, boolean transpositions) throws IOException {
if (maxEdits < 0 || maxEdits > LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE) {
throw new IllegalArgumentException("max edits must be 0.." + LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE + ", inclusive; got: " + maxEdits);
}
if (prefixLength < 0) {
throw new IllegalArgumentException("prefixLength cannot be less than 0");
}
this.maxEdits = maxEdits;
this.terms = terms;
this.term = term;
// convert the string into a utf32 int[] representation for fast comparisons
final String utf16 = term.text();
this.termText = new int[utf16.codePointCount(0, utf16.length())];
for (int cp, i = 0, j = 0; i < utf16.length(); i += Character.charCount(cp))
termText[j++] = cp = utf16.codePointAt(i);
for (int cp, i = 0, j = 0; i < utf16.length(); i += Character.charCount(cp)) {
termText[j++] = cp = utf16.codePointAt(i);
}
this.termLength = termText.length;
this.dfaAtt = atts.addAttribute(LevenshteinAutomataAttribute.class);
this.maxBoostAtt = atts.addAttribute(MaxNonCompetitiveBoostAttribute.class);
// NOTE: boostAtt must pulled from attributes() not from atts! This is because TopTermsRewrite looks for boostAtt from this TermsEnum's
// private attributes() and not the global atts passed to us from MultiTermQuery:
this.boostAtt = attributes().addAttribute(BoostAttribute.class);
//The prefix could be longer than the word.
//It's kind of silly though. It means we must match the entire word.
this.realPrefixLength = prefixLength > termLength ? termLength : prefixLength;
// if minSimilarity >= 1, we treat it as number of edits
if (minSimilarity >= 1f) {
this.minSimilarity = 0; // just driven by number of edits
maxEdits = (int) minSimilarity;
raw = true;
} else {
this.minSimilarity = minSimilarity;
// calculate the maximum k edits for this similarity
maxEdits = initialMaxDistance(this.minSimilarity, termLength);
raw = false;
}
if (transpositions && maxEdits > LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE) {
throw new UnsupportedOperationException("with transpositions enabled, distances > "
+ LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE + " are not supported ");
}
this.transpositions = transpositions;
this.scale_factor = 1.0f / (1.0f - this.minSimilarity);
this.maxBoostAtt = atts.addAttribute(MaxNonCompetitiveBoostAttribute.class);
CompiledAutomaton[] prevAutomata = dfaAtt.automata();
if (prevAutomata == null) {
prevAutomata = new CompiledAutomaton[maxEdits+1];
LevenshteinAutomata builder =
new LevenshteinAutomata(UnicodeUtil.newString(termText, realPrefixLength, termText.length - realPrefixLength), transpositions);
String prefix = UnicodeUtil.newString(termText, 0, realPrefixLength);
for (int i = 0; i <= maxEdits; i++) {
Automaton a = builder.toAutomaton(i, prefix);
prevAutomata[i] = new CompiledAutomaton(a, true, false);
}
// first segment computes the automata, and we share with subsequent segments via this Attribute:
dfaAtt.setAutomata(prevAutomata);
}
this.automata = prevAutomata;
bottom = maxBoostAtt.getMaxNonCompetitiveBoost();
bottomTerm = maxBoostAtt.getCompetitiveTerm();
bottomChanged(null, true);
bottomChanged(null);
}
/**
* return an automata-based enum for matching up to editDistance from
* lastTerm, if possible
*/
protected TermsEnum getAutomatonEnum(int editDistance, BytesRef lastTerm)
throws IOException {
final List<CompiledAutomaton> runAutomata = initAutomata(editDistance);
if (editDistance < runAutomata.size()) {
//System.out.println("FuzzyTE.getAEnum: ed=" + editDistance + " lastTerm=" + (lastTerm==null ? "null" : lastTerm.utf8ToString()));
final CompiledAutomaton compiled = runAutomata.get(editDistance);
return new AutomatonFuzzyTermsEnum(terms.intersect(compiled, lastTerm == null ? null : compiled.floor(lastTerm, new BytesRefBuilder())),
runAutomata.subList(0, editDistance + 1).toArray(new CompiledAutomaton[editDistance + 1]));
private TermsEnum getAutomatonEnum(int editDistance, BytesRef lastTerm) throws IOException {
assert editDistance < automata.length;
final CompiledAutomaton compiled = automata[editDistance];
BytesRef initialSeekTerm;
if (lastTerm == null) {
// This is the first enum we are pulling:
initialSeekTerm = null;
} else {
return null;
// We are pulling this enum (e.g., ed=1) after iterating for a while already (e.g., ed=2):
initialSeekTerm = compiled.floor(lastTerm, new BytesRefBuilder());
}
return terms.intersect(compiled, initialSeekTerm);
}
/** initialize levenshtein DFAs up to maxDistance, if possible */
private List<CompiledAutomaton> initAutomata(int maxDistance) {
final List<CompiledAutomaton> runAutomata = dfaAtt.automata();
//System.out.println("cached automata size: " + runAutomata.size());
if (runAutomata.size() <= maxDistance &&
maxDistance <= LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE) {
LevenshteinAutomata builder =
new LevenshteinAutomata(UnicodeUtil.newString(termText, realPrefixLength, termText.length - realPrefixLength), transpositions);
String prefix = UnicodeUtil.newString(termText, 0, realPrefixLength);
for (int i = runAutomata.size(); i <= maxDistance; i++) {
Automaton a = builder.toAutomaton(i, prefix);
//System.out.println("compute automaton n=" + i);
runAutomata.add(new CompiledAutomaton(a, true, false));
}
}
return runAutomata;
}
/** swap in a new actual enum to proxy to */
protected void setEnum(TermsEnum actualEnum) {
this.actualEnum = actualEnum;
this.actualBoostAtt = actualEnum.attributes().addAttribute(BoostAttribute.class);
}
/**
* fired when the max non-competitive boost has changed. this is the hook to
* swap in a smarter actualEnum
* swap in a smarter actualEnum.
*/
private void bottomChanged(BytesRef lastTerm, boolean init)
throws IOException {
private void bottomChanged(BytesRef lastTerm) throws IOException {
int oldMaxEdits = maxEdits;
// true if the last term encountered is lexicographically equal or after the bottom term in the PQ
@ -193,49 +181,73 @@ public class FuzzyTermsEnum extends TermsEnum {
// as long as the max non-competitive boost is >= the max boost
// for some edit distance, keep dropping the max edit distance.
while (maxEdits > 0 && (termAfter ? bottom >= calculateMaxBoost(maxEdits) : bottom > calculateMaxBoost(maxEdits)))
while (maxEdits > 0) {
float maxBoost = 1.0f - ((float) maxEdits / (float) termLength);
if (bottom < maxBoost || (bottom == maxBoost && termAfter == false)) {
break;
}
maxEdits--;
}
// TODO: this opto could be improved, e.g. if the worst term in the queue is zzzz with ed=2, then, really, on the next segment, we
// should only be looking for ed=1 terms up until zzzz, then ed=2. Tricky :)
if (oldMaxEdits != maxEdits || init) { // the maximum n has changed
maxEditDistanceChanged(lastTerm, maxEdits, init);
if (oldMaxEdits != maxEdits || lastTerm == null) {
// This is a very powerful optimization: the maximum edit distance has changed. This happens because we collect only the top scoring
// N (= 50, by default) terms, and if e.g. maxEdits=2, and the queue is now full of matching terms, and we notice that the worst entry
// in that queue is ed=1, then we can switch the automata here to ed=1 which is a big speedup.
actualEnum = getAutomatonEnum(maxEdits, lastTerm);
}
}
protected void maxEditDistanceChanged(BytesRef lastTerm, int maxEdits, boolean init)
throws IOException {
TermsEnum newEnum = getAutomatonEnum(maxEdits, lastTerm);
// instead of assert, we do a hard check in case someone uses our enum directly
// assert newEnum != null;
if (newEnum == null) {
assert maxEdits > LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE;
throw new IllegalArgumentException("maxEdits cannot be > LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE");
}
setEnum(newEnum);
}
// for some raw min similarity and input term length, the maximum # of edits
private int initialMaxDistance(float minimumSimilarity, int termLen) {
return (int) ((1D-minimumSimilarity) * termLen);
}
// for some number of edits, the maximum possible scaled boost
private float calculateMaxBoost(int nEdits) {
final float similarity = 1.0f - ((float) nEdits / (float) (termLength));
return (similarity - minSimilarity) * scale_factor;
}
private BytesRef queuedBottom = null;
@Override
public BytesRef next() throws IOException {
if (queuedBottom != null) {
bottomChanged(queuedBottom, false);
bottomChanged(queuedBottom);
queuedBottom = null;
}
BytesRef term = actualEnum.next();
boostAtt.setBoost(actualBoostAtt.getBoost());
BytesRef term;
// while loop because we skip short terms even if they are within the specified edit distance (see the NOTE in FuzzyQuery class javadocs)
while (true) {
term = actualEnum.next();
if (term == null) {
// end
break;
}
int ed = maxEdits;
// we know the outer DFA always matches.
// now compute exact edit distance
while (ed > 0) {
if (matches(term, ed - 1)) {
ed--;
} else {
break;
}
}
if (ed == 0) { // exact match
boostAtt.setBoost(1.0F);
break;
} else {
final int codePointCount = UnicodeUtil.codePointCount(term);
int minTermLength = Math.min(codePointCount, termLength);
// only accept a matching term if it's longer than the edit distance:
if (minTermLength > ed) {
float similarity = 1.0f - (float) ed / (float) minTermLength;
boostAtt.setBoost(similarity);
break;
}
}
}
final float bottom = maxBoostAtt.getMaxNonCompetitiveBoost();
final BytesRef bottomTerm = maxBoostAtt.getCompetitiveTerm();
if (term != null && (bottom != this.bottom || bottomTerm != this.bottomTerm)) {
@ -243,11 +255,18 @@ public class FuzzyTermsEnum extends TermsEnum {
this.bottomTerm = bottomTerm;
// clone the term before potentially doing something with it
// this is a rare but wonderful occurrence anyway
// We must delay bottomChanged until the next next() call otherwise we mess up docFreq(), etc., for the current term:
queuedBottom = BytesRef.deepCopyOf(term);
}
return term;
}
/** returns true if term is within k edits of the query term */
private boolean matches(BytesRef termIn, int k) {
return k == 0 ? termIn.equals(term.bytes()) : automata[k].runAutomaton.run(termIn.bytes, termIn.offset, termIn.length);
}
// proxy all other enum calls to the actual enum
@Override
@ -300,109 +319,43 @@ public class FuzzyTermsEnum extends TermsEnum {
return actualEnum.term();
}
/**
* Implement fuzzy enumeration with Terms.intersect.
* <p>
* This is the fastest method as opposed to LinearFuzzyTermsEnum:
* as enumeration is logarithmic to the number of terms (instead of linear)
* and comparison is linear to length of the term (rather than quadratic)
*/
private class AutomatonFuzzyTermsEnum extends FilteredTermsEnum {
private final ByteRunAutomaton matchers[];
private final BytesRef termRef;
private final BoostAttribute boostAtt =
attributes().addAttribute(BoostAttribute.class);
public AutomatonFuzzyTermsEnum(TermsEnum tenum, CompiledAutomaton compiled[]) {
super(tenum, false);
this.matchers = new ByteRunAutomaton[compiled.length];
for (int i = 0; i < compiled.length; i++)
this.matchers[i] = compiled[i].runAutomaton;
termRef = new BytesRef(term.text());
}
/** finds the smallest Lev(n) DFA that accepts the term. */
@Override
protected AcceptStatus accept(BytesRef term) {
//System.out.println("AFTE.accept term=" + term);
int ed = matchers.length - 1;
// we are wrapping either an intersect() TermsEnum or an AutomatonTermsENum,
// so we know the outer DFA always matches.
// now compute exact edit distance
while (ed > 0) {
if (matches(term, ed - 1)) {
ed--;
} else {
break;
}
}
//System.out.println("CHECK term=" + term.utf8ToString() + " ed=" + ed);
// scale to a boost and return (if similarity > minSimilarity)
if (ed == 0) { // exact match
boostAtt.setBoost(1.0F);
//System.out.println(" yes");
return AcceptStatus.YES;
} else {
final int codePointCount = UnicodeUtil.codePointCount(term);
final float similarity = 1.0f - ((float) ed / (float)
(Math.min(codePointCount, termLength)));
if (similarity > minSimilarity) {
boostAtt.setBoost((similarity - minSimilarity) * scale_factor);
//System.out.println(" yes");
return AcceptStatus.YES;
} else {
return AcceptStatus.NO;
}
}
}
/** returns true if term is within k edits of the query term */
final boolean matches(BytesRef term, int k) {
return k == 0 ? term.equals(termRef) : matchers[k].run(term.bytes, term.offset, term.length);
}
}
/** @lucene.internal */
public float getMinSimilarity() {
return minSimilarity;
}
/** @lucene.internal */
public float getScaleFactor() {
return scale_factor;
}
/**
* reuses compiled automata across different segments,
* because they are independent of the index
* @lucene.internal */
public static interface LevenshteinAutomataAttribute extends Attribute {
public List<CompiledAutomaton> automata();
public CompiledAutomaton[] automata();
public void setAutomata(CompiledAutomaton[] automata);
}
/**
* Stores compiled automata as a list (indexed by edit distance)
* @lucene.internal */
public static final class LevenshteinAutomataAttributeImpl extends AttributeImpl implements LevenshteinAutomataAttribute {
private final List<CompiledAutomaton> automata = new ArrayList<>();
private CompiledAutomaton[] automata;
@Override
public List<CompiledAutomaton> automata() {
public CompiledAutomaton[] automata() {
return automata;
}
@Override
public void setAutomata(CompiledAutomaton[] automata) {
this.automata = automata;
}
@Override
public void clear() {
automata.clear();
automata = null;
}
@Override
public int hashCode() {
return automata.hashCode();
if (automata == null) {
return 0;
} else {
return automata.hashCode();
}
}
@Override
@ -411,15 +364,17 @@ public class FuzzyTermsEnum extends TermsEnum {
return true;
if (!(other instanceof LevenshteinAutomataAttributeImpl))
return false;
return automata.equals(((LevenshteinAutomataAttributeImpl) other).automata);
return Arrays.equals(automata, ((LevenshteinAutomataAttributeImpl) other).automata);
}
@Override
public void copyTo(AttributeImpl target) {
final List<CompiledAutomaton> targetAutomata =
((LevenshteinAutomataAttribute) target).automata();
targetAutomata.clear();
targetAutomata.addAll(automata);
public void copyTo(AttributeImpl _target) {
LevenshteinAutomataAttribute target = (LevenshteinAutomataAttribute) _target;
if (automata == null) {
target.setAutomata(null);
} else {
target.setAutomata(automata);
}
}
@Override

View File

@ -19,12 +19,16 @@ package org.apache.lucene.search;
import java.io.IOException;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import org.apache.lucene.analysis.MockAnalyzer;
import org.apache.lucene.analysis.MockTokenizer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.StringField;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.MultiReader;
import org.apache.lucene.index.RandomIndexWriter;
@ -32,7 +36,10 @@ import org.apache.lucene.index.Term;
import org.apache.lucene.search.BooleanClause.Occur;
import org.apache.lucene.search.similarities.ClassicSimilarity;
import org.apache.lucene.store.Directory;
import org.apache.lucene.util.IOUtils;
import org.apache.lucene.util.IntsRef;
import org.apache.lucene.util.LuceneTestCase;
import org.apache.lucene.util.TestUtil;
import org.apache.lucene.util.automaton.LevenshteinAutomata;
/**
@ -489,4 +496,166 @@ public class TestFuzzyQuery extends LuceneTestCase {
doc.add(newTextField("field", text, Field.Store.YES));
writer.addDocument(doc);
}
private String randomSimpleString(int digits) {
int termLength = TestUtil.nextInt(random(), 1, 8);
char[] chars = new char[termLength];
for(int i=0;i<termLength;i++) {
chars[i] = (char) ('a' + random().nextInt(digits));
}
return new String(chars);
}
@SuppressWarnings({"unchecked","rawtypes"})
public void testRandom() throws Exception {
int numTerms = atLeast(100);
int digits = TestUtil.nextInt(random(), 2, 3);
Set<String> terms = new HashSet<>();
while (terms.size() < numTerms) {
terms.add(randomSimpleString(digits));
}
Directory dir = newDirectory();
RandomIndexWriter w = new RandomIndexWriter(random(), dir);
for(String term : terms) {
Document doc = new Document();
doc.add(new StringField("field", term, Field.Store.YES));
w.addDocument(doc);
}
DirectoryReader r = w.getReader();
IndexSearcher s = newSearcher(r);
int iters = atLeast(1000);
for(int iter=0;iter<iters;iter++) {
String queryTerm = randomSimpleString(digits);
int prefixLength = random().nextInt(queryTerm.length());
String queryPrefix = queryTerm.substring(0, prefixLength);
// we don't look at scores here:
Set<String>[] expected = new Set[3];
for(int ed=0;ed<3;ed++) {
expected[ed] = new HashSet<String>();
}
for(String term : terms) {
if (term.startsWith(queryPrefix) == false) {
continue;
}
int ed = getDistance(term, queryTerm);
if (Math.min(queryTerm.length(), term.length()) > ed) {
while (ed < 3) {
expected[ed].add(term);
ed++;
}
}
}
for(int ed=0;ed<3;ed++) {
FuzzyQuery query = new FuzzyQuery(new Term("field", queryTerm), ed, prefixLength, terms.size(), true);
TopDocs hits = s.search(query, terms.size());
Set<String> actual = new HashSet<>();
for(ScoreDoc hit : hits.scoreDocs) {
Document doc = s.doc(hit.doc);
actual.add(doc.get("field"));
}
if (actual.equals(expected[ed]) == false) {
StringBuilder sb = new StringBuilder();
sb.append("FAILED: query=" + queryTerm + " ed=" + ed + " prefixLength=" + prefixLength + "\n");
boolean first = true;
for(String term : actual) {
if (expected[ed].contains(term) == false) {
if (first) {
sb.append(" these matched but shouldn't:\n");
first = false;
}
sb.append(" " + term + "\n");
}
}
first = true;
for(String term : expected[ed]) {
if (actual.contains(term) == false) {
if (first) {
sb.append(" these did not match but should:\n");
first = false;
}
sb.append(" " + term + "\n");
}
}
throw new AssertionError(sb.toString());
}
}
}
IOUtils.close(r, w, dir);
}
// Poached from LuceneLevenshteinDistance.java (from suggest module): it supports transpositions (treats them as ed=1, not ed=2)
private static int getDistance(String target, String other) {
IntsRef targetPoints;
IntsRef otherPoints;
int n;
int d[][]; // cost array
// NOTE: if we cared, we could 3*m space instead of m*n space, similar to
// what LevenshteinDistance does, except cycling thru a ring of three
// horizontal cost arrays... but this comparator is never actually used by
// DirectSpellChecker, it's only used for merging results from multiple shards
// in "distributed spellcheck", and it's inefficient in other ways too...
// cheaper to do this up front once
targetPoints = toIntsRef(target);
otherPoints = toIntsRef(other);
n = targetPoints.length;
final int m = otherPoints.length;
d = new int[n+1][m+1];
if (n == 0 || m == 0) {
if (n == m) {
return 0;
}
else {
return Math.max(n, m);
}
}
// indexes into strings s and t
int i; // iterates through s
int j; // iterates through t
int t_j; // jth character of t
int cost; // cost
for (i = 0; i<=n; i++) {
d[i][0] = i;
}
for (j = 0; j<=m; j++) {
d[0][j] = j;
}
for (j = 1; j<=m; j++) {
t_j = otherPoints.ints[j-1];
for (i=1; i<=n; i++) {
cost = targetPoints.ints[i-1]==t_j ? 0 : 1;
// minimum of cell to the left+1, to the top+1, diagonally left and up +cost
d[i][j] = Math.min(Math.min(d[i-1][j]+1, d[i][j-1]+1), d[i-1][j-1]+cost);
// transposition
if (i > 1 && j > 1 && targetPoints.ints[i-1] == otherPoints.ints[j-2] && targetPoints.ints[i-2] == otherPoints.ints[j-1]) {
d[i][j] = Math.min(d[i][j], d[i-2][j-2] + cost);
}
}
}
return d[n][m];
}
private static IntsRef toIntsRef(String s) {
IntsRef ref = new IntsRef(s.length()); // worst case
int utf16Len = s.length();
for (int i = 0, cp = 0; i < utf16Len; i += Character.charCount(cp)) {
cp = ref.ints[ref.length++] = Character.codePointAt(s, i);
}
return ref;
}
}

View File

@ -21,8 +21,8 @@ import org.apache.lucene.queryparser.xml.DOMUtils;
import org.apache.lucene.queryparser.xml.ParserException;
import org.apache.lucene.queryparser.xml.QueryBuilder;
import org.apache.lucene.sandbox.queries.FuzzyLikeThisQuery;
import org.apache.lucene.sandbox.queries.SlowFuzzyQuery;
import org.apache.lucene.search.BoostQuery;
import org.apache.lucene.search.FuzzyQuery;
import org.apache.lucene.search.Query;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
@ -33,7 +33,7 @@ import org.w3c.dom.NodeList;
public class FuzzyLikeThisQueryBuilder implements QueryBuilder {
private static final int DEFAULT_MAX_NUM_TERMS = 50;
private static final float DEFAULT_MIN_SIMILARITY = SlowFuzzyQuery.defaultMinSimilarity;
private static final float DEFAULT_MIN_SIMILARITY = FuzzyQuery.defaultMinSimilarity;
private static final int DEFAULT_PREFIX_LENGTH = 1;
private static final boolean DEFAULT_IGNORE_TF = false;

View File

@ -38,6 +38,7 @@ import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.BoostAttribute;
import org.apache.lucene.search.BoostQuery;
import org.apache.lucene.search.ConstantScoreQuery;
import org.apache.lucene.search.FuzzyTermsEnum;
import org.apache.lucene.search.MaxNonCompetitiveBoostAttribute;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.TermQuery;
@ -46,6 +47,7 @@ import org.apache.lucene.search.similarities.TFIDFSimilarity;
import org.apache.lucene.util.AttributeSource;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.PriorityQueue;
import org.apache.lucene.util.automaton.LevenshteinAutomata;
/**
* Fuzzifies ALL terms provided as strings and then picks the best n differentiating terms.
@ -64,62 +66,62 @@ import org.apache.lucene.util.PriorityQueue;
*/
public class FuzzyLikeThisQuery extends Query
{
// TODO: generalize this query (at least it should not reuse this static sim!
// a better way might be to convert this into multitermquery rewrite methods.
// the rewrite method can 'average' the TermContext's term statistics (docfreq,totalTermFreq)
// provided to TermQuery, so that the general idea is agnostic to any scoring system...
static TFIDFSimilarity sim=new ClassicSimilarity();
ArrayList<FieldVals> fieldVals=new ArrayList<>();
Analyzer analyzer;
// TODO: generalize this query (at least it should not reuse this static sim!
// a better way might be to convert this into multitermquery rewrite methods.
// the rewrite method can 'average' the TermContext's term statistics (docfreq,totalTermFreq)
// provided to TermQuery, so that the general idea is agnostic to any scoring system...
static TFIDFSimilarity sim=new ClassicSimilarity();
ArrayList<FieldVals> fieldVals=new ArrayList<>();
Analyzer analyzer;
int MAX_VARIANTS_PER_TERM=50;
boolean ignoreTF=false;
private int maxNumTerms;
int MAX_VARIANTS_PER_TERM=50;
boolean ignoreTF=false;
private int maxNumTerms;
@Override
public int hashCode() {
int prime = 31;
int result = classHash();
result = prime * result + Objects.hashCode(analyzer);
result = prime * result + Objects.hashCode(fieldVals);
result = prime * result + (ignoreTF ? 1231 : 1237);
result = prime * result + maxNumTerms;
return result;
}
@Override
public int hashCode() {
int prime = 31;
int result = classHash();
result = prime * result + Objects.hashCode(analyzer);
result = prime * result + Objects.hashCode(fieldVals);
result = prime * result + (ignoreTF ? 1231 : 1237);
result = prime * result + maxNumTerms;
return result;
}
@Override
public boolean equals(Object other) {
return sameClassAs(other) &&
equalsTo(getClass().cast(other));
}
@Override
public boolean equals(Object other) {
return sameClassAs(other) &&
equalsTo(getClass().cast(other));
}
private boolean equalsTo(FuzzyLikeThisQuery other) {
return Objects.equals(analyzer, other.analyzer) &&
Objects.equals(fieldVals, other.fieldVals) &&
ignoreTF == other.ignoreTF &&
maxNumTerms == other.maxNumTerms;
}
private boolean equalsTo(FuzzyLikeThisQuery other) {
return Objects.equals(analyzer, other.analyzer) &&
Objects.equals(fieldVals, other.fieldVals) &&
ignoreTF == other.ignoreTF &&
maxNumTerms == other.maxNumTerms;
}
/**
*
* @param maxNumTerms The total number of terms clauses that will appear once rewritten as a BooleanQuery
*/
public FuzzyLikeThisQuery(int maxNumTerms, Analyzer analyzer)
{
this.analyzer=analyzer;
this.maxNumTerms = maxNumTerms;
}
/**
*
* @param maxNumTerms The total number of terms clauses that will appear once rewritten as a BooleanQuery
*/
public FuzzyLikeThisQuery(int maxNumTerms, Analyzer analyzer)
{
this.analyzer=analyzer;
this.maxNumTerms = maxNumTerms;
}
class FieldVals
{
String queryString;
String fieldName;
float minSimilarity;
int prefixLength;
public FieldVals(String name, float similarity, int length, String queryString)
class FieldVals
{
String queryString;
String fieldName;
int maxEdits;
int prefixLength;
public FieldVals(String name, int maxEdits, int length, String queryString)
{
fieldName = name;
minSimilarity = similarity;
this.maxEdits = maxEdits;
prefixLength = length;
this.queryString = queryString;
}
@ -129,11 +131,11 @@ public class FuzzyLikeThisQuery extends Query
final int prime = 31;
int result = 1;
result = prime * result
+ ((fieldName == null) ? 0 : fieldName.hashCode());
result = prime * result + Float.floatToIntBits(minSimilarity);
+ ((fieldName == null) ? 0 : fieldName.hashCode());
result = prime * result + maxEdits;
result = prime * result + prefixLength;
result = prime * result
+ ((queryString == null) ? 0 : queryString.hashCode());
+ ((queryString == null) ? 0 : queryString.hashCode());
return result;
}
@ -151,9 +153,9 @@ public class FuzzyLikeThisQuery extends Query
return false;
} else if (!fieldName.equals(other.fieldName))
return false;
if (Float.floatToIntBits(minSimilarity) != Float
.floatToIntBits(other.minSimilarity))
if (maxEdits != other.maxEdits) {
return false;
}
if (prefixLength != other.prefixLength)
return false;
if (queryString == null) {
@ -166,18 +168,22 @@ public class FuzzyLikeThisQuery extends Query
}
}
/**
* Adds user input for "fuzzification"
* @param queryString The string which will be parsed by the analyzer and for which fuzzy variants will be parsed
* @param minSimilarity The minimum similarity of the term variants (see FuzzyTermsEnum)
* @param prefixLength Length of required common prefix on variant terms (see FuzzyTermsEnum)
*/
public void addTerms(String queryString, String fieldName,float minSimilarity, int prefixLength)
{
fieldVals.add(new FieldVals(fieldName,minSimilarity,prefixLength,queryString));
/**
* Adds user input for "fuzzification"
* @param queryString The string which will be parsed by the analyzer and for which fuzzy variants will be parsed
* @param minSimilarity The minimum similarity of the term variants; must be 0, 1 or 2 (see FuzzyTermsEnum)
* @param prefixLength Length of required common prefix on variant terms (see FuzzyTermsEnum)
*/
public void addTerms(String queryString, String fieldName,float minSimilarity, int prefixLength)
{
int maxEdits = (int) minSimilarity;
if (maxEdits != minSimilarity || maxEdits < 0 || maxEdits > LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE) {
throw new IllegalArgumentException("minSimilarity must integer value between 0 and " + LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE + ", inclusive; got " + minSimilarity);
}
fieldVals.add(new FieldVals(fieldName,maxEdits,prefixLength,queryString));
}
private void addTerms(IndexReader reader, FieldVals f, ScoreTermQueue q) throws IOException {
@ -202,7 +208,7 @@ public class FuzzyLikeThisQuery extends Query
AttributeSource atts = new AttributeSource();
MaxNonCompetitiveBoostAttribute maxBoostAtt =
atts.addAttribute(MaxNonCompetitiveBoostAttribute.class);
SlowFuzzyTermsEnum fe = new SlowFuzzyTermsEnum(terms, atts, startTerm, f.minSimilarity, f.prefixLength);
FuzzyTermsEnum fe = new FuzzyTermsEnum(terms, atts, startTerm, f.maxEdits, f.prefixLength, true);
//store the df so all variants use same idf
int df = reader.docFreq(startTerm);
int numVariants = 0;
@ -225,9 +231,9 @@ public class FuzzyLikeThisQuery extends Query
if (numVariants > 0) {
int avgDf = totalVariantDocFreqs / numVariants;
if (df == 0)//no direct match we can use as df for all variants
{
df = avgDf; //use avg df of all variants
}
{
df = avgDf; //use avg df of all variants
}
// take the top variants (scored by edit distance) and reset the score
// to include an IDF factor then add to the global queue for ranking
@ -267,105 +273,105 @@ public class FuzzyLikeThisQuery extends Query
}
@Override
public Query rewrite(IndexReader reader) throws IOException
{
ScoreTermQueue q = new ScoreTermQueue(maxNumTerms);
//load up the list of possible terms
for (FieldVals f : fieldVals) {
addTerms(reader, f, q);
}
BooleanQuery.Builder bq = new BooleanQuery.Builder();
//create BooleanQueries to hold the variants for each token/field pair and ensure it
// has no coord factor
//Step 1: sort the termqueries by term/field
HashMap<Term,ArrayList<ScoreTerm>> variantQueries=new HashMap<>();
int size = q.size();
for(int i = 0; i < size; i++)
{
ScoreTerm st = q.pop();
ArrayList<ScoreTerm> l= variantQueries.get(st.fuzziedSourceTerm);
if(l==null)
{
l=new ArrayList<>();
variantQueries.put(st.fuzziedSourceTerm,l);
}
l.add(st);
}
//Step 2: Organize the sorted termqueries into zero-coord scoring boolean queries
for (Iterator<ArrayList<ScoreTerm>> iter = variantQueries.values().iterator(); iter.hasNext();)
{
ArrayList<ScoreTerm> variants = iter.next();
if(variants.size()==1)
{
//optimize where only one selected variant
ScoreTerm st= variants.get(0);
Query tq = newTermQuery(reader, st.term);
// set the boost to a mix of IDF and score
bq.add(new BoostQuery(tq, st.score), BooleanClause.Occur.SHOULD);
}
else
{
BooleanQuery.Builder termVariants=new BooleanQuery.Builder();
for (Iterator<ScoreTerm> iterator2 = variants.iterator(); iterator2
.hasNext();)
{
ScoreTerm st = iterator2.next();
// found a match
Query tq = newTermQuery(reader, st.term);
// set the boost using the ScoreTerm's score
termVariants.add(new BoostQuery(tq, st.score), BooleanClause.Occur.SHOULD); // add to query
}
bq.add(termVariants.build(), BooleanClause.Occur.SHOULD); // add to query
}
}
//TODO possible alternative step 3 - organize above booleans into a new layer of field-based
// booleans with a minimum-should-match of NumFields-1?
return bq.build();
public Query rewrite(IndexReader reader) throws IOException
{
ScoreTermQueue q = new ScoreTermQueue(maxNumTerms);
//load up the list of possible terms
for (FieldVals f : fieldVals) {
addTerms(reader, f, q);
}
//Holds info for a fuzzy term variant - initially score is set to edit distance (for ranking best
// term variants) then is reset with IDF for use in ranking against all other
// terms/fields
private static class ScoreTerm{
public Term term;
public float score;
Term fuzziedSourceTerm;
public ScoreTerm(Term term, float score, Term fuzziedSourceTerm){
this.term = term;
this.score = score;
this.fuzziedSourceTerm=fuzziedSourceTerm;
}
BooleanQuery.Builder bq = new BooleanQuery.Builder();
//create BooleanQueries to hold the variants for each token/field pair and ensure it
// has no coord factor
//Step 1: sort the termqueries by term/field
HashMap<Term,ArrayList<ScoreTerm>> variantQueries=new HashMap<>();
int size = q.size();
for(int i = 0; i < size; i++)
{
ScoreTerm st = q.pop();
ArrayList<ScoreTerm> l= variantQueries.get(st.fuzziedSourceTerm);
if(l==null)
{
l=new ArrayList<>();
variantQueries.put(st.fuzziedSourceTerm,l);
}
l.add(st);
}
private static class ScoreTermQueue extends PriorityQueue<ScoreTerm> {
public ScoreTermQueue(int size){
super(size);
}
//Step 2: Organize the sorted termqueries into zero-coord scoring boolean queries
for (Iterator<ArrayList<ScoreTerm>> iter = variantQueries.values().iterator(); iter.hasNext();)
{
ArrayList<ScoreTerm> variants = iter.next();
if(variants.size()==1)
{
//optimize where only one selected variant
ScoreTerm st= variants.get(0);
Query tq = newTermQuery(reader, st.term);
// set the boost to a mix of IDF and score
bq.add(new BoostQuery(tq, st.score), BooleanClause.Occur.SHOULD);
}
else
{
BooleanQuery.Builder termVariants=new BooleanQuery.Builder();
for (Iterator<ScoreTerm> iterator2 = variants.iterator(); iterator2
.hasNext();)
{
ScoreTerm st = iterator2.next();
// found a match
Query tq = newTermQuery(reader, st.term);
// set the boost using the ScoreTerm's score
termVariants.add(new BoostQuery(tq, st.score), BooleanClause.Occur.SHOULD); // add to query
}
bq.add(termVariants.build(), BooleanClause.Occur.SHOULD); // add to query
}
}
//TODO possible alternative step 3 - organize above booleans into a new layer of field-based
// booleans with a minimum-should-match of NumFields-1?
return bq.build();
}
//Holds info for a fuzzy term variant - initially score is set to edit distance (for ranking best
// term variants) then is reset with IDF for use in ranking against all other
// terms/fields
private static class ScoreTerm{
public Term term;
public float score;
Term fuzziedSourceTerm;
/* (non-Javadoc)
* @see org.apache.lucene.util.PriorityQueue#lessThan(java.lang.Object, java.lang.Object)
*/
@Override
protected boolean lessThan(ScoreTerm termA, ScoreTerm termB) {
if (termA.score== termB.score)
return termA.term.compareTo(termB.term) > 0;
else
return termA.score < termB.score;
}
}
public ScoreTerm(Term term, float score, Term fuzziedSourceTerm){
this.term = term;
this.score = score;
this.fuzziedSourceTerm=fuzziedSourceTerm;
}
}
private static class ScoreTermQueue extends PriorityQueue<ScoreTerm> {
public ScoreTermQueue(int size){
super(size);
}
/* (non-Javadoc)
* @see org.apache.lucene.search.Query#toString(java.lang.String)
* @see org.apache.lucene.util.PriorityQueue#lessThan(java.lang.Object, java.lang.Object)
*/
@Override
public String toString(String field)
{
return null;
protected boolean lessThan(ScoreTerm termA, ScoreTerm termB) {
if (termA.score== termB.score)
return termA.term.compareTo(termB.term) > 0;
else
return termA.score < termB.score;
}
}
/* (non-Javadoc)
* @see org.apache.lucene.search.Query#toString(java.lang.String)
*/
@Override
public String toString(String field)
{
return null;
}
public boolean isIgnoreTF()

View File

@ -1,201 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.sandbox.queries;
import java.io.IOException;
import org.apache.lucene.index.SingleTermsEnum;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.BooleanQuery; // javadocs
import org.apache.lucene.search.FuzzyQuery; // javadocs
import org.apache.lucene.search.MultiTermQuery;
import org.apache.lucene.util.AttributeSource;
import org.apache.lucene.util.automaton.LevenshteinAutomata;
/** Implements the classic fuzzy search query. The similarity measurement
* is based on the Levenshtein (edit distance) algorithm.
* <p>
* Note that, unlike {@link FuzzyQuery}, this query will silently allow
* for a (possibly huge) number of edit distances in comparisons, and may
* be extremely slow (comparing every term in the index).
*
* @deprecated Use {@link FuzzyQuery} instead.
*/
@Deprecated
public class SlowFuzzyQuery extends MultiTermQuery {
public final static float defaultMinSimilarity = LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE;
public final static int defaultPrefixLength = 0;
public final static int defaultMaxExpansions = 50;
private float minimumSimilarity;
private int prefixLength;
private boolean termLongEnough = false;
protected Term term;
/**
* Create a new SlowFuzzyQuery that will match terms with a similarity
* of at least <code>minimumSimilarity</code> to <code>term</code>.
* If a <code>prefixLength</code> &gt; 0 is specified, a common prefix
* of that length is also required.
*
* @param term the term to search for
* @param minimumSimilarity a value between 0 and 1 to set the required similarity
* between the query term and the matching terms. For example, for a
* <code>minimumSimilarity</code> of <code>0.5</code> a term of the same length
* as the query term is considered similar to the query term if the edit distance
* between both terms is less than <code>length(term)*0.5</code>
* <p>
* Alternatively, if <code>minimumSimilarity</code> is &gt;= 1f, it is interpreted
* as a pure Levenshtein edit distance. For example, a value of <code>2f</code>
* will match all terms within an edit distance of <code>2</code> from the
* query term. Edit distances specified in this way may not be fractional.
*
* @param prefixLength length of common (non-fuzzy) prefix
* @param maxExpansions the maximum number of terms to match. If this number is
* greater than {@link BooleanQuery#getMaxClauseCount} when the query is rewritten,
* then the maxClauseCount will be used instead.
* @throws IllegalArgumentException if minimumSimilarity is &gt;= 1 or &lt; 0
* or if prefixLength &lt; 0
*/
public SlowFuzzyQuery(Term term, float minimumSimilarity, int prefixLength,
int maxExpansions) {
super(term.field());
this.term = term;
if (minimumSimilarity >= 1.0f && minimumSimilarity != (int)minimumSimilarity)
throw new IllegalArgumentException("fractional edit distances are not allowed");
if (minimumSimilarity < 0.0f)
throw new IllegalArgumentException("minimumSimilarity < 0");
if (prefixLength < 0)
throw new IllegalArgumentException("prefixLength < 0");
if (maxExpansions < 0)
throw new IllegalArgumentException("maxExpansions < 0");
setRewriteMethod(new MultiTermQuery.TopTermsScoringBooleanQueryRewrite(maxExpansions));
String text = term.text();
int len = text.codePointCount(0, text.length());
if (len > 0 && (minimumSimilarity >= 1f || len > 1.0f / (1.0f - minimumSimilarity))) {
this.termLongEnough = true;
}
this.minimumSimilarity = minimumSimilarity;
this.prefixLength = prefixLength;
}
/**
* Calls {@link #SlowFuzzyQuery(Term, float) SlowFuzzyQuery(term, minimumSimilarity, prefixLength, defaultMaxExpansions)}.
*/
public SlowFuzzyQuery(Term term, float minimumSimilarity, int prefixLength) {
this(term, minimumSimilarity, prefixLength, defaultMaxExpansions);
}
/**
* Calls {@link #SlowFuzzyQuery(Term, float) SlowFuzzyQuery(term, minimumSimilarity, 0, defaultMaxExpansions)}.
*/
public SlowFuzzyQuery(Term term, float minimumSimilarity) {
this(term, minimumSimilarity, defaultPrefixLength, defaultMaxExpansions);
}
/**
* Calls {@link #SlowFuzzyQuery(Term, float) SlowFuzzyQuery(term, defaultMinSimilarity, 0, defaultMaxExpansions)}.
*/
public SlowFuzzyQuery(Term term) {
this(term, defaultMinSimilarity, defaultPrefixLength, defaultMaxExpansions);
}
/**
* Returns the minimum similarity that is required for this query to match.
* @return float value between 0.0 and 1.0
*/
public float getMinSimilarity() {
return minimumSimilarity;
}
/**
* Returns the non-fuzzy prefix length. This is the number of characters at the start
* of a term that must be identical (not fuzzy) to the query term if the query
* is to match that term.
*/
public int getPrefixLength() {
return prefixLength;
}
@Override
protected TermsEnum getTermsEnum(Terms terms, AttributeSource atts) throws IOException {
if (!termLongEnough) { // can only match if it's exact
return new SingleTermsEnum(terms.iterator(), term.bytes());
}
return new SlowFuzzyTermsEnum(terms, atts, getTerm(), minimumSimilarity, prefixLength);
}
/**
* Returns the pattern term.
*/
public Term getTerm() {
return term;
}
@Override
public String toString(String field) {
final StringBuilder buffer = new StringBuilder();
if (!term.field().equals(field)) {
buffer.append(term.field());
buffer.append(":");
}
buffer.append(term.text());
buffer.append('~');
buffer.append(Float.toString(minimumSimilarity));
return buffer.toString();
}
@Override
public int hashCode() {
final int prime = 31;
int result = super.hashCode();
result = prime * result + Float.floatToIntBits(minimumSimilarity);
result = prime * result + prefixLength;
result = prime * result + ((term == null) ? 0 : term.hashCode());
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (!super.equals(obj))
return false;
if (getClass() != obj.getClass())
return false;
SlowFuzzyQuery other = (SlowFuzzyQuery) obj;
if (Float.floatToIntBits(minimumSimilarity) != Float
.floatToIntBits(other.minimumSimilarity))
return false;
if (prefixLength != other.prefixLength)
return false;
if (term == null) {
if (other.term != null)
return false;
} else if (!term.equals(other.term))
return false;
return true;
}
}

View File

@ -1,263 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.sandbox.queries;
import java.io.IOException;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.index.FilteredTermsEnum;
import org.apache.lucene.search.BoostAttribute;
import org.apache.lucene.search.FuzzyTermsEnum;
import org.apache.lucene.util.AttributeSource;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.IntsRefBuilder;
import org.apache.lucene.util.StringHelper;
import org.apache.lucene.util.UnicodeUtil;
/** Potentially slow fuzzy TermsEnum for enumerating all terms that are similar
* to the specified filter term.
* <p> If the minSimilarity or maxEdits is greater than the Automaton's
* allowable range, this backs off to the classic (brute force)
* fuzzy terms enum method by calling FuzzyTermsEnum's getAutomatonEnum.
* </p>
* <p>Term enumerations are always ordered by
* {@link BytesRef#compareTo}. Each term in the enumeration is
* greater than all that precede it.</p>
*
* @deprecated Use {@link FuzzyTermsEnum} instead.
*/
@Deprecated
public final class SlowFuzzyTermsEnum extends FuzzyTermsEnum {
public SlowFuzzyTermsEnum(Terms terms, AttributeSource atts, Term term,
float minSimilarity, int prefixLength) throws IOException {
super(terms, atts, term, minSimilarity, prefixLength, false);
}
@Override
protected void maxEditDistanceChanged(BytesRef lastTerm, int maxEdits, boolean init)
throws IOException {
TermsEnum newEnum = getAutomatonEnum(maxEdits, lastTerm);
if (newEnum != null) {
setEnum(newEnum);
} else if (init) {
setEnum(new LinearFuzzyTermsEnum());
}
}
/**
* Implement fuzzy enumeration with linear brute force.
*/
private class LinearFuzzyTermsEnum extends FilteredTermsEnum {
/* Allows us save time required to create a new array
* every time similarity is called.
*/
private int[] d;
private int[] p;
// this is the text, minus the prefix
private final int[] text;
private final BoostAttribute boostAtt =
attributes().addAttribute(BoostAttribute.class);
/**
* Constructor for enumeration of all terms from specified <code>reader</code> which share a prefix of
* length <code>prefixLength</code> with <code>term</code> and which have a fuzzy similarity &gt;
* <code>minSimilarity</code>.
* <p>
* After calling the constructor the enumeration is already pointing to the first
* valid term if such a term exists.
*
* @throws IOException If there is a low-level I/O error.
*/
public LinearFuzzyTermsEnum() throws IOException {
super(terms.iterator());
this.text = new int[termLength - realPrefixLength];
System.arraycopy(termText, realPrefixLength, text, 0, text.length);
final String prefix = UnicodeUtil.newString(termText, 0, realPrefixLength);
prefixBytesRef = new BytesRef(prefix);
this.d = new int[this.text.length + 1];
this.p = new int[this.text.length + 1];
setInitialSeekTerm(prefixBytesRef);
}
private final BytesRef prefixBytesRef;
// used for unicode conversion from BytesRef byte[] to int[]
private final IntsRefBuilder utf32 = new IntsRefBuilder();
/**
* <p>The termCompare method in FuzzyTermEnum uses Levenshtein distance to
* calculate the distance between the given term and the comparing term.
* </p>
* <p>If the minSimilarity is &gt;= 1.0, this uses the maxEdits as the comparison.
* Otherwise, this method uses the following logic to calculate similarity.
* <pre>
* similarity = 1 - ((float)distance / (float) (prefixLength + Math.min(textlen, targetlen)));
* </pre>
* where distance is the Levenshtein distance for the two words.
* </p>
*
*/
@Override
protected final AcceptStatus accept(BytesRef term) {
if (StringHelper.startsWith(term, prefixBytesRef)) {
utf32.copyUTF8Bytes(term);
final int distance = calcDistance(utf32.ints(), realPrefixLength, utf32.length() - realPrefixLength);
//Integer.MIN_VALUE is the sentinel that Levenshtein stopped early
if (distance == Integer.MIN_VALUE){
return AcceptStatus.NO;
}
//no need to calc similarity, if raw is true and distance > maxEdits
if (raw == true && distance > maxEdits){
return AcceptStatus.NO;
}
final float similarity = calcSimilarity(distance, (utf32.length() - realPrefixLength), text.length);
//if raw is true, then distance must also be <= maxEdits by now
//given the previous if statement
if (raw == true ||
(raw == false && similarity > minSimilarity)) {
boostAtt.setBoost((similarity - minSimilarity) * scale_factor);
return AcceptStatus.YES;
} else {
return AcceptStatus.NO;
}
} else {
return AcceptStatus.END;
}
}
/******************************
* Compute Levenshtein distance
******************************/
/**
* <p>calcDistance returns the Levenshtein distance between the query term
* and the target term.</p>
*
* <p>Embedded within this algorithm is a fail-fast Levenshtein distance
* algorithm. The fail-fast algorithm differs from the standard Levenshtein
* distance algorithm in that it is aborted if it is discovered that the
* minimum distance between the words is greater than some threshold.
* <p>Levenshtein distance (also known as edit distance) is a measure of similarity
* between two strings where the distance is measured as the number of character
* deletions, insertions or substitutions required to transform one string to
* the other string.
* @param target the target word or phrase
* @param offset the offset at which to start the comparison
* @param length the length of what's left of the string to compare
* @return the number of edits or Integer.MIN_VALUE if the edit distance is
* greater than maxDistance.
*/
private final int calcDistance(final int[] target, int offset, int length) {
final int m = length;
final int n = text.length;
if (n == 0) {
//we don't have anything to compare. That means if we just add
//the letters for m we get the new word
return m;
}
if (m == 0) {
return n;
}
final int maxDistance = calculateMaxDistance(m);
if (maxDistance < Math.abs(m-n)) {
//just adding the characters of m to n or vice-versa results in
//too many edits
//for example "pre" length is 3 and "prefixes" length is 8. We can see that
//given this optimal circumstance, the edit distance cannot be less than 5.
//which is 8-3 or more precisely Math.abs(3-8).
//if our maximum edit distance is 4, then we can discard this word
//without looking at it.
return Integer.MIN_VALUE;
}
// init matrix d
for (int i = 0; i <=n; ++i) {
p[i] = i;
}
// start computing edit distance
for (int j = 1; j<=m; ++j) { // iterates through target
int bestPossibleEditDistance = m;
final int t_j = target[offset+j-1]; // jth character of t
d[0] = j;
for (int i=1; i<=n; ++i) { // iterates through text
// minimum of cell to the left+1, to the top+1, diagonally left and up +(0|1)
if (t_j != text[i-1]) {
d[i] = Math.min(Math.min(d[i-1], p[i]), p[i-1]) + 1;
} else {
d[i] = Math.min(Math.min(d[i-1]+1, p[i]+1), p[i-1]);
}
bestPossibleEditDistance = Math.min(bestPossibleEditDistance, d[i]);
}
//After calculating row i, the best possible edit distance
//can be found by found by finding the smallest value in a given column.
//If the bestPossibleEditDistance is greater than the max distance, abort.
if (j > maxDistance && bestPossibleEditDistance > maxDistance) { //equal is okay, but not greater
//the closest the target can be to the text is just too far away.
//this target is leaving the party early.
return Integer.MIN_VALUE;
}
// copy current distance counts to 'previous row' distance counts: swap p and d
int _d[] = p;
p = d;
d = _d;
}
// our last action in the above loop was to switch d and p, so p now
// actually has the most recent cost counts
return p[n];
}
private float calcSimilarity(int edits, int m, int n){
// this will return less than 0.0 when the edit distance is
// greater than the number of characters in the shorter word.
// but this was the formula that was previously used in FuzzyTermEnum,
// so it has not been changed (even though minimumSimilarity must be
// greater than 0.0)
return 1.0f - ((float)edits / (float) (realPrefixLength + Math.min(n, m)));
}
/**
* The max Distance is the maximum Levenshtein distance for the text
* compared to some other value that results in score that is
* better than the minimum similarity.
* @param m the length of the "other value"
* @return the maximum levenshtein distance that we care about
*/
private int calculateMaxDistance(int m) {
return raw ? maxEdits : Math.min(maxEdits,
(int)((1-minSimilarity) * (Math.min(text.length, m) + realPrefixLength)));
}
}
}

View File

@ -77,7 +77,7 @@ public class FuzzyLikeThisQueryTest extends LuceneTestCase {
//Tests that idf ranking is not favouring rare mis-spellings over a strong edit-distance match
public void testClosestEditDistanceMatchComesFirst() throws Throwable {
FuzzyLikeThisQuery flt = new FuzzyLikeThisQuery(10, analyzer);
flt.addTerms("smith", "name", 0.3f, 1);
flt.addTerms("smith", "name", 2, 1);
Query q = flt.rewrite(searcher.getIndexReader());
HashSet<Term> queryTerms = new HashSet<>();
searcher.createWeight(q, true, 1f).extractTerms(queryTerms);
@ -94,7 +94,7 @@ public class FuzzyLikeThisQueryTest extends LuceneTestCase {
//Test multiple input words are having variants produced
public void testMultiWord() throws Throwable {
FuzzyLikeThisQuery flt = new FuzzyLikeThisQuery(10, analyzer);
flt.addTerms("jonathin smoth", "name", 0.3f, 1);
flt.addTerms("jonathin smoth", "name", 2, 1);
Query q = flt.rewrite(searcher.getIndexReader());
HashSet<Term> queryTerms = new HashSet<>();
searcher.createWeight(q, true, 1f).extractTerms(queryTerms);
@ -110,8 +110,8 @@ public class FuzzyLikeThisQueryTest extends LuceneTestCase {
// LUCENE-4809
public void testNonExistingField() throws Throwable {
FuzzyLikeThisQuery flt = new FuzzyLikeThisQuery(10, analyzer);
flt.addTerms("jonathin smoth", "name", 0.3f, 1);
flt.addTerms("jonathin smoth", "this field does not exist", 0.3f, 1);
flt.addTerms("jonathin smoth", "name", 2, 1);
flt.addTerms("jonathin smoth", "this field does not exist", 2, 1);
// don't fail here just because the field doesn't exits
Query q = flt.rewrite(searcher.getIndexReader());
HashSet<Term> queryTerms = new HashSet<>();
@ -129,7 +129,7 @@ public class FuzzyLikeThisQueryTest extends LuceneTestCase {
//Test bug found when first query word does not match anything
public void testNoMatchFirstWordBug() throws Throwable {
FuzzyLikeThisQuery flt = new FuzzyLikeThisQuery(10, analyzer);
flt.addTerms("fernando smith", "name", 0.3f, 1);
flt.addTerms("fernando smith", "name", 2, 1);
Query q = flt.rewrite(searcher.getIndexReader());
HashSet<Term> queryTerms = new HashSet<>();
searcher.createWeight(q, true, 1f).extractTerms(queryTerms);
@ -144,9 +144,9 @@ public class FuzzyLikeThisQueryTest extends LuceneTestCase {
public void testFuzzyLikeThisQueryEquals() {
Analyzer analyzer = new MockAnalyzer(random());
FuzzyLikeThisQuery fltq1 = new FuzzyLikeThisQuery(10, analyzer);
fltq1.addTerms("javi", "subject", 0.5f, 2);
fltq1.addTerms("javi", "subject", 2, 2);
FuzzyLikeThisQuery fltq2 = new FuzzyLikeThisQuery(10, analyzer);
fltq2.addTerms("javi", "subject", 0.5f, 2);
fltq2.addTerms("javi", "subject", 2, 2);
assertEquals("FuzzyLikeThisQuery with same attributes is not equal", fltq1,
fltq2);
}

View File

@ -1,487 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.sandbox.queries;
import java.util.List;
import java.util.Arrays;
import java.io.IOException;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.MultiReader;
import org.apache.lucene.index.RandomIndexWriter;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.MultiTermQuery;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.apache.lucene.util.LuceneTestCase;
/**
* Tests {@link SlowFuzzyQuery}.
*
*/
public class TestSlowFuzzyQuery extends LuceneTestCase {
public void testFuzziness() throws Exception {
//every test with SlowFuzzyQuery.defaultMinSimilarity
//is exercising the Automaton, not the brute force linear method
Directory directory = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), directory);
addDoc("aaaaa", writer);
addDoc("aaaab", writer);
addDoc("aaabb", writer);
addDoc("aabbb", writer);
addDoc("abbbb", writer);
addDoc("bbbbb", writer);
addDoc("ddddd", writer);
IndexReader reader = writer.getReader();
IndexSearcher searcher = newSearcher(reader);
writer.close();
SlowFuzzyQuery query = new SlowFuzzyQuery(new Term("field", "aaaaa"), SlowFuzzyQuery.defaultMinSimilarity, 0);
ScoreDoc[] hits = searcher.search(query, 1000).scoreDocs;
assertEquals(3, hits.length);
// same with prefix
query = new SlowFuzzyQuery(new Term("field", "aaaaa"), SlowFuzzyQuery.defaultMinSimilarity, 1);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(3, hits.length);
query = new SlowFuzzyQuery(new Term("field", "aaaaa"), SlowFuzzyQuery.defaultMinSimilarity, 2);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(3, hits.length);
query = new SlowFuzzyQuery(new Term("field", "aaaaa"), SlowFuzzyQuery.defaultMinSimilarity, 3);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(3, hits.length);
query = new SlowFuzzyQuery(new Term("field", "aaaaa"), SlowFuzzyQuery.defaultMinSimilarity, 4);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(2, hits.length);
query = new SlowFuzzyQuery(new Term("field", "aaaaa"), SlowFuzzyQuery.defaultMinSimilarity, 5);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
query = new SlowFuzzyQuery(new Term("field", "aaaaa"), SlowFuzzyQuery.defaultMinSimilarity, 6);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
// test scoring
query = new SlowFuzzyQuery(new Term("field", "bbbbb"), SlowFuzzyQuery.defaultMinSimilarity, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals("3 documents should match", 3, hits.length);
List<String> order = Arrays.asList("bbbbb","abbbb","aabbb");
for (int i = 0; i < hits.length; i++) {
final String term = searcher.doc(hits[i].doc).get("field");
//System.out.println(hits[i].score);
assertEquals(order.get(i), term);
}
// test pq size by supplying maxExpansions=2
// This query would normally return 3 documents, because 3 terms match (see above):
query = new SlowFuzzyQuery(new Term("field", "bbbbb"), SlowFuzzyQuery.defaultMinSimilarity, 0, 2);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals("only 2 documents should match", 2, hits.length);
order = Arrays.asList("bbbbb","abbbb");
for (int i = 0; i < hits.length; i++) {
final String term = searcher.doc(hits[i].doc).get("field");
//System.out.println(hits[i].score);
assertEquals(order.get(i), term);
}
// not similar enough:
query = new SlowFuzzyQuery(new Term("field", "xxxxx"), SlowFuzzyQuery.defaultMinSimilarity, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
query = new SlowFuzzyQuery(new Term("field", "aaccc"), SlowFuzzyQuery.defaultMinSimilarity, 0); // edit distance to "aaaaa" = 3
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
// query identical to a word in the index:
query = new SlowFuzzyQuery(new Term("field", "aaaaa"), SlowFuzzyQuery.defaultMinSimilarity, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(3, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaa"));
// default allows for up to two edits:
assertEquals(searcher.doc(hits[1].doc).get("field"), ("aaaab"));
assertEquals(searcher.doc(hits[2].doc).get("field"), ("aaabb"));
// query similar to a word in the index:
query = new SlowFuzzyQuery(new Term("field", "aaaac"), SlowFuzzyQuery.defaultMinSimilarity, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(3, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaa"));
assertEquals(searcher.doc(hits[1].doc).get("field"), ("aaaab"));
assertEquals(searcher.doc(hits[2].doc).get("field"), ("aaabb"));
// now with prefix
query = new SlowFuzzyQuery(new Term("field", "aaaac"), SlowFuzzyQuery.defaultMinSimilarity, 1);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(3, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaa"));
assertEquals(searcher.doc(hits[1].doc).get("field"), ("aaaab"));
assertEquals(searcher.doc(hits[2].doc).get("field"), ("aaabb"));
query = new SlowFuzzyQuery(new Term("field", "aaaac"), SlowFuzzyQuery.defaultMinSimilarity, 2);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(3, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaa"));
assertEquals(searcher.doc(hits[1].doc).get("field"), ("aaaab"));
assertEquals(searcher.doc(hits[2].doc).get("field"), ("aaabb"));
query = new SlowFuzzyQuery(new Term("field", "aaaac"), SlowFuzzyQuery.defaultMinSimilarity, 3);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(3, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaa"));
assertEquals(searcher.doc(hits[1].doc).get("field"), ("aaaab"));
assertEquals(searcher.doc(hits[2].doc).get("field"), ("aaabb"));
query = new SlowFuzzyQuery(new Term("field", "aaaac"), SlowFuzzyQuery.defaultMinSimilarity, 4);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(2, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaa"));
assertEquals(searcher.doc(hits[1].doc).get("field"), ("aaaab"));
query = new SlowFuzzyQuery(new Term("field", "aaaac"), SlowFuzzyQuery.defaultMinSimilarity, 5);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
query = new SlowFuzzyQuery(new Term("field", "ddddX"), SlowFuzzyQuery.defaultMinSimilarity, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("ddddd"));
// now with prefix
query = new SlowFuzzyQuery(new Term("field", "ddddX"), SlowFuzzyQuery.defaultMinSimilarity, 1);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("ddddd"));
query = new SlowFuzzyQuery(new Term("field", "ddddX"), SlowFuzzyQuery.defaultMinSimilarity, 2);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("ddddd"));
query = new SlowFuzzyQuery(new Term("field", "ddddX"), SlowFuzzyQuery.defaultMinSimilarity, 3);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("ddddd"));
query = new SlowFuzzyQuery(new Term("field", "ddddX"), SlowFuzzyQuery.defaultMinSimilarity, 4);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("ddddd"));
query = new SlowFuzzyQuery(new Term("field", "ddddX"), SlowFuzzyQuery.defaultMinSimilarity, 5);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
// different field = no match:
query = new SlowFuzzyQuery(new Term("anotherfield", "ddddX"), SlowFuzzyQuery.defaultMinSimilarity, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
reader.close();
directory.close();
}
public void testFuzzinessLong2() throws Exception {
//Lucene-5033
Directory directory = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), directory);
addDoc("abcdef", writer);
addDoc("segment", writer);
IndexReader reader = writer.getReader();
IndexSearcher searcher = newSearcher(reader);
writer.close();
SlowFuzzyQuery query;
query = new SlowFuzzyQuery(new Term("field", "abcxxxx"), 3f, 0);
ScoreDoc[] hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
query = new SlowFuzzyQuery(new Term("field", "abcxxxx"), 4f, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
reader.close();
directory.close();
}
public void testFuzzinessLong() throws Exception {
Directory directory = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), directory);
addDoc("aaaaaaa", writer);
addDoc("segment", writer);
IndexReader reader = writer.getReader();
IndexSearcher searcher = newSearcher(reader);
writer.close();
SlowFuzzyQuery query;
// not similar enough:
query = new SlowFuzzyQuery(new Term("field", "xxxxx"), 0.5f, 0);
ScoreDoc[] hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
// edit distance to "aaaaaaa" = 3, this matches because the string is longer than
// in testDefaultFuzziness so a bigger difference is allowed:
query = new SlowFuzzyQuery(new Term("field", "aaaaccc"), 0.5f, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaaaa"));
// now with prefix
query = new SlowFuzzyQuery(new Term("field", "aaaaccc"), 0.5f, 1);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaaaa"));
query = new SlowFuzzyQuery(new Term("field", "aaaaccc"), 0.5f, 4);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
assertEquals(searcher.doc(hits[0].doc).get("field"), ("aaaaaaa"));
query = new SlowFuzzyQuery(new Term("field", "aaaaccc"), 0.5f, 5);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
// no match, more than half of the characters is wrong:
query = new SlowFuzzyQuery(new Term("field", "aaacccc"), 0.5f, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
// now with prefix
query = new SlowFuzzyQuery(new Term("field", "aaacccc"), 0.5f, 2);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
// "student" and "stellent" are indeed similar to "segment" by default:
query = new SlowFuzzyQuery(new Term("field", "student"), 0.5f, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
query = new SlowFuzzyQuery(new Term("field", "stellent"), 0.5f, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
// now with prefix
query = new SlowFuzzyQuery(new Term("field", "student"), 0.5f, 1);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
query = new SlowFuzzyQuery(new Term("field", "stellent"), 0.5f, 1);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
query = new SlowFuzzyQuery(new Term("field", "student"), 0.5f, 2);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
query = new SlowFuzzyQuery(new Term("field", "stellent"), 0.5f, 2);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
// "student" doesn't match anymore thanks to increased minimum similarity:
query = new SlowFuzzyQuery(new Term("field", "student"), 0.6f, 0);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
expectThrows(IllegalArgumentException.class, () -> {
new SlowFuzzyQuery(new Term("field", "student"), 1.1f);
});
expectThrows(IllegalArgumentException.class, () -> {
new SlowFuzzyQuery(new Term("field", "student"), -0.1f);
});
reader.close();
directory.close();
}
/**
* MultiTermQuery provides (via attribute) information about which values
* must be competitive to enter the priority queue.
*
* SlowFuzzyQuery optimizes itself around this information, if the attribute
* is not implemented correctly, there will be problems!
*/
public void testTieBreaker() throws Exception {
Directory directory = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), directory);
addDoc("a123456", writer);
addDoc("c123456", writer);
addDoc("d123456", writer);
addDoc("e123456", writer);
Directory directory2 = newDirectory();
RandomIndexWriter writer2 = new RandomIndexWriter(random(), directory2);
addDoc("a123456", writer2);
addDoc("b123456", writer2);
addDoc("b123456", writer2);
addDoc("b123456", writer2);
addDoc("c123456", writer2);
addDoc("f123456", writer2);
IndexReader ir1 = writer.getReader();
IndexReader ir2 = writer2.getReader();
MultiReader mr = new MultiReader(ir1, ir2);
IndexSearcher searcher = newSearcher(mr);
SlowFuzzyQuery fq = new SlowFuzzyQuery(new Term("field", "z123456"), 1f, 0, 2);
TopDocs docs = searcher.search(fq, 2);
assertEquals(5, docs.totalHits); // 5 docs, from the a and b's
mr.close();
ir1.close();
ir2.close();
writer.close();
writer2.close();
directory.close();
directory2.close();
}
public void testTokenLengthOpt() throws IOException {
Directory directory = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), directory);
addDoc("12345678911", writer);
addDoc("segment", writer);
IndexReader reader = writer.getReader();
IndexSearcher searcher = newSearcher(reader);
writer.close();
Query query;
// term not over 10 chars, so optimization shortcuts
query = new SlowFuzzyQuery(new Term("field", "1234569"), 0.9f);
ScoreDoc[] hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
// 10 chars, so no optimization
query = new SlowFuzzyQuery(new Term("field", "1234567891"), 0.9f);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
// over 10 chars, so no optimization
query = new SlowFuzzyQuery(new Term("field", "12345678911"), 0.9f);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(1, hits.length);
// over 10 chars, no match
query = new SlowFuzzyQuery(new Term("field", "sdfsdfsdfsdf"), 0.9f);
hits = searcher.search(query, 1000).scoreDocs;
assertEquals(0, hits.length);
reader.close();
directory.close();
}
/** Test the TopTermsBoostOnlyBooleanQueryRewrite rewrite method. */
public void testBoostOnlyRewrite() throws Exception {
Directory directory = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), directory);
addDoc("Lucene", writer);
addDoc("Lucene", writer);
addDoc("Lucenne", writer);
IndexReader reader = writer.getReader();
IndexSearcher searcher = newSearcher(reader);
writer.close();
SlowFuzzyQuery query = new SlowFuzzyQuery(new Term("field", "lucene"));
query.setRewriteMethod(new MultiTermQuery.TopTermsBoostOnlyBooleanQueryRewrite(50));
ScoreDoc[] hits = searcher.search(query, 1000).scoreDocs;
assertEquals(3, hits.length);
// normally, 'Lucenne' would be the first result as IDF will skew the score.
assertEquals("Lucene", reader.document(hits[0].doc).get("field"));
assertEquals("Lucene", reader.document(hits[1].doc).get("field"));
assertEquals("Lucenne", reader.document(hits[2].doc).get("field"));
reader.close();
directory.close();
}
public void testGiga() throws Exception {
Directory index = newDirectory();
RandomIndexWriter w = new RandomIndexWriter(random(), index);
addDoc("Lucene in Action", w);
addDoc("Lucene for Dummies", w);
//addDoc("Giga", w);
addDoc("Giga byte", w);
addDoc("ManagingGigabytesManagingGigabyte", w);
addDoc("ManagingGigabytesManagingGigabytes", w);
addDoc("The Art of Computer Science", w);
addDoc("J. K. Rowling", w);
addDoc("JK Rowling", w);
addDoc("Joanne K Roling", w);
addDoc("Bruce Willis", w);
addDoc("Willis bruce", w);
addDoc("Brute willis", w);
addDoc("B. willis", w);
IndexReader r = w.getReader();
w.close();
Query q = new SlowFuzzyQuery(new Term("field", "giga"), 0.9f);
// 3. search
IndexSearcher searcher = newSearcher(r);
ScoreDoc[] hits = searcher.search(q, 10).scoreDocs;
assertEquals(1, hits.length);
assertEquals("Giga byte", searcher.doc(hits[0].doc).get("field"));
r.close();
index.close();
}
public void testDistanceAsEditsSearching() throws Exception {
Directory index = newDirectory();
RandomIndexWriter w = new RandomIndexWriter(random(), index);
addDoc("foobar", w);
addDoc("test", w);
addDoc("working", w);
IndexReader reader = w.getReader();
IndexSearcher searcher = newSearcher(reader);
w.close();
SlowFuzzyQuery q = new SlowFuzzyQuery(new Term("field", "fouba"), 2);
ScoreDoc[] hits = searcher.search(q, 10).scoreDocs;
assertEquals(1, hits.length);
assertEquals("foobar", searcher.doc(hits[0].doc).get("field"));
q = new SlowFuzzyQuery(new Term("field", "foubara"), 2);
hits = searcher.search(q, 10).scoreDocs;
assertEquals(1, hits.length);
assertEquals("foobar", searcher.doc(hits[0].doc).get("field"));
q = new SlowFuzzyQuery(new Term("field", "t"), 3);
hits = searcher.search(q, 10).scoreDocs;
assertEquals(1, hits.length);
assertEquals("test", searcher.doc(hits[0].doc).get("field"));
q = new SlowFuzzyQuery(new Term("field", "a"), 4f, 0, 50);
hits = searcher.search(q, 10).scoreDocs;
assertEquals(1, hits.length);
assertEquals("test", searcher.doc(hits[0].doc).get("field"));
q = new SlowFuzzyQuery(new Term("field", "a"), 6f, 0, 50);
hits = searcher.search(q, 10).scoreDocs;
assertEquals(2, hits.length);
assertEquals("test", searcher.doc(hits[0].doc).get("field"));
assertEquals("foobar", searcher.doc(hits[1].doc).get("field"));
reader.close();
index.close();
}
private void addDoc(String text, RandomIndexWriter writer) throws IOException {
Document doc = new Document();
doc.add(newTextField("field", text, Field.Store.YES));
writer.addDocument(doc);
}
}

View File

@ -415,40 +415,42 @@ public class DirectSpellChecker {
BoostAttribute boostAtt =
e.attributes().addAttribute(BoostAttribute.class);
while ((candidateTerm = e.next()) != null) {
final float boost = boostAtt.getBoost();
// For FuzzyQuery, boost is the score:
float score = boostAtt.getBoost();
// ignore uncompetitive hits
if (stQueue.size() >= numSug && boost <= stQueue.peek().boost)
if (stQueue.size() >= numSug && score <= stQueue.peek().boost) {
continue;
}
// ignore exact match of the same term
if (queryTerm.bytesEquals(candidateTerm))
if (queryTerm.bytesEquals(candidateTerm)) {
continue;
}
int df = e.docFreq();
// check docFreq if required
if (df <= docfreq)
if (df <= docfreq) {
continue;
}
final float score;
final String termAsString;
if (distance == INTERNAL_LEVENSHTEIN) {
// delay creating strings until the end
termAsString = null;
// undo FuzzyTermsEnum's scale factor for a real scaled lev score
score = boost / e.getScaleFactor() + e.getMinSimilarity();
} else {
spare.copyUTF8Bytes(candidateTerm);
termAsString = spare.toString();
score = distance.getDistance(term.text(), termAsString);
}
if (score < accuracy)
if (score < accuracy) {
continue;
}
// add new entry in PQ
st.term = BytesRef.deepCopyOf(candidateTerm);
st.boost = boost;
st.boost = score;
st.docfreq = df;
st.termAsString = termAsString;
st.score = score;