
MAVEN PROJECT BUILDER SPECIFICATION

SHANE ISBELL

Contents

1. Introduction 2
1.1. Purpose 2
2. Model Transformations 2
2.1. Canonical Data Format 2
3. General Inheritance Rules 3
3.1. Constructing 3
3.2. Sorting 4
3.3. Model Containers 4
3.4. Mixins and Multiple Inheritance 4
4. Maven Project Inheritance Rules 5
4.1. Inheriting Version and Group Ids 5
4.2. Inheriting URLs 5
4.3. Properties Excluded From Being Overridden 5
4.4. Properties Excluded From Inheritance 6
4.5. Marking Containers as Final (Or Not Inherited) 6
4.6. Artifact Inheritance (Model Container) 7
4.7. Id Inheritance (Model Container) 8
4.8. Plugin Configuration Inheritance 9
5. Management Rules 9
5.1. Dependency/Plugin Management 9
6. Interpolation Rules 9
6.1. Type of Properties 9
6.2. Processing Rules 11
6.3. Interpolation and Profiles 11
7. Profiles 11
7.1. Default Profile Matcher 12
7.2. File 12
7.3. JDK 12
8. Model Container Operations 12
8.1. Definitions 12
8.2. M-Operators 12
Appendix A. Definitions 13

1

2 SHANE ISBELL

1. Introduction

1.1. Purpose. The purpose of this document is to cover how the Maven project
model is constructed and interpolated. Out of scope are issues such as dependency
resolution.

2. Model Transformations

2.1. Canonical Data Format. Maven supports a canonical data format for the
pom that includes 465 model properties (we refer to each ordered pair of uri/values
as a model property).

http://apache.org/maven/project/modelVersion

http://apache.org/maven/project/groupId

http://apache.org/maven/project/artifactId

So a valid set would contain ordered pairs:
A = {〈”http : //apache.org/maven/project/groupId”, ”org.apache.maven”〉, 〈”http :

//apache.org/maven/project/artifactId”, ”mavencore”}〉 . . .}.
Technically A is also ordered.
Anyone is free to create a transformer from any another format (yaml, .NET

projects files, etc) to this canonical data format, giving them all the benefits of
project inheritance and interpolation that Maven uses in building a project.

2.1.1. Collections. A model property may be specified as a collection, which allows
specialized join rules for adding model properties. Collections of collections are
allowed.

http://apache.org/maven/project/build/plugins#collection

http://apache.org/maven/project/build/plugins#collection/plugin/executions#collection

http://apache.org/maven/project/profiles#collection

There are 31 collections within the canonical data format.

2.1.2. Sets. A model property may be specified as a set, which means that model
properties are not duplicated. Generally sets are only used on configuration prop-
erties of the plugins.

http://...pluginManagement/plugins#collection/plugin/configuration#set

http://...plugins#collection/plugin/configuration#set

2.1.3. Singletons. Any model property not defined as a collection or set is a sin-
gleton, This means that only one entry containing the model property’s URI is
allowed in the transformed list.

MAVEN PROJECT BUILDER SPECIFICATION 3

3. General Inheritance Rules

General inheritance rules are those rules applied to a list of model properties,
independent of the domain context. The framework delegates domain specific
inheritance rules to ModelTransformers provided to it by the invoking application.
These will be covered in the next section, under Maven Project Inheritance Rules.

3.1. Constructing. Basic construction rules are as follows

(1) Let there be a collection of domain models (poms) denoted by set Di, where
for some n ∈ N the collection is ordered from most specific to least specific
C = {D0,D1, ...,Dn}. Dn is the SuperPom and must be contained within
C, even if it is the only element.

(2) Let pj be an ordered pair (or model property). In the case of the pom,
j = nodes + properties of the pom. Define t as a function operating on
elements of C that transforms each element to a set of model properties.
D′
i = t(Di) = {p0, p1, ...pm}. We end up with a transformed collection of

domain models: C ′ = {D′
0,D′

1, ...,D′
n}.

(3) Add in mixin containing global setting profiles
(4) Next domain specific rules are applied (See section 3). Let tr be a domain

transform rule: ∀j∀iAi,j ⊆ D′
i such that A′

i,j = {tr(p0), tr(p1), ..., tr(pn))}.
tr may change either the model property URI or value or may transform
the property to a null value (remove it) or it could add additional model
properties not from the original set. We are left with C ′′ = ∀j∀i

⋃
i,j(D′

i ∪
A′

i,j−(D′
i∩Ai,j)). Thus C ′′ is just a set of transformed and untransformed

model properties from all of the domain models Di. These model properties
are still ordered from most specialized model to least.

(5) Model properties are now sorted (see section 2.2). Collections and sets are
left in reverse order.

(6) Model container rules are applied for collections and sets. The general
sorting in the previous step doesn’t know how to handle collections and
sets and needs to delegate back to the domain specific model containers
(Sections 3.4 and 3.5)

(7) Model properties are sorted (see section 2.2) again. This is to maintain the
original order of collections.

(8) Interpolates the model properties (Section 5)
(9) Determine active profile(s)

(10) Applies Profiles
(11) Interpolates the model properties
(12) Applies dependency management rules
(13) Applies plugin management rules

The last four steps involve cross-applying elements of the pom into the same
pom. Inheritance takes place prior to this type of cross-applying operation. These

4 SHANE ISBELL

operations have characteristics very similar to mixins, as they are not complete
pom models in themselves.

Profiles may contain properties that are used in interpolating the containing
pom. Thus interpolation is also done after cross-applying the profile.

3.2. Sorting. Let C ′′ be the original set of model properties and let C ′′′ be the
new set, which is initially empty. Now iterate over each element (model property)
of C ′′ placing the model property into set C ′′′ according to the following rules:

(1) Let ui be the uri from model property 〈uri, value〉i If ui = baseUri, then it is
placed first in the list. In the case of Maven, http://apache.org/maven/project
is the baseUri and defines the top node name.

(2) If ui is not within any of the model properties contained within C ′′′ then
place the model property into C ′′′. This rule only allows one singleton into
the set: http://.../project/groupId and since C ′′ is sorted in order of most
specialized to least specialized, only the most specialized pom values will
be maintained.

(3) If ui contains a value of #collection or #set but does not end with #collec-
tion or #set then then place the model property into C ′′′, at the position of
its first (and only) parent. For example, http://.../project/build/plugins#collection
would have been added in the previous step (because it was not contained in
C ′′′) but this step would exclude any additional model properties containing
http://.../project/build/plugins#collection. However, all model properties
containing uri http://apache.org/maven/project/build/plugins#collection/plugin
would be added just below its collection. Only one node of a collection type
is maintained but multiple children within that collection are allowed.

3.3. Model Containers. In addition to the general inheritance rules, there is
also the concept of Model Containers, which allow the framework to delegate to
specific model container implementations the decision of whether #collections and
#sets should be joined, deleted, or have no operation applied. This will be covered
more fully in section 3.

3.4. Mixins and Multiple Inheritance. Currently, Maven 3.0 supports lin-
earlized inheritance, making mixins and multiple inheritance easy. Support for
multiple inheritance would require an additional to the pom, within the parents
section.

<parents>

<parent>

<groupId>org.apache.maven.shared</groupId>

<artifactId>maven-shared-components</artifactId>

<version>9</version>

</parent>

<parent>

MAVEN PROJECT BUILDER SPECIFICATION 5

<artifactId>maven</artifactId>

<groupId>org.apache.maven</groupId>

<version>3.0-SNAPSHOT</version>

</parent>

</parents>

In the case above, the child pom’s model properties would be first in the set, fol-
lowed by the model properties of maven-shared-components ; then maven project’s
model properties and finally by the SuperPom’s model properties. So from the
framework’s perspective there is little difference between multiple inheritance and
single inheritance.

Mixins would function the same as multiple/single inheritance:

<mixins>

<mixin>

<groupId>org.apache.maven</groupId>

<artifactId>dependency-mixin</artifactId>

<version>1</version>

</mixin>

<mixin>

<groupId>org.apache.maven</groupId>

<artifactId>repository-mixin</artifactId>

<version>2</version>

</mixin>

</mixins>

The only difference between a parent project and a mixin is that the mixin is
abstract (not a complete model).

4. Maven Project Inheritance Rules

These rules outlined in this section are provided in the PomTransformer class.
The maven-shared-model framework will delegate to this transformer for the pro-
cessing of the Maven specific domain model rules.

4.1. Inheriting Version and Group Ids. If project.version is not specified
within the child pom, the child pom will use the project.parent.version as its own
version. Similarly, if project.groupId is not within the child pom, the child pom
will use the project.parent.groupId as its own project.groupId.

4.2. Inheriting URLs.

4.3. Properties Excluded From Being Overridden. If the child project de-
fines any of the properties below, they are not overridden by or joined with elements
of the parent pom(s).

(1) project.build.resources
(2) project.build.testResoures

6 SHANE ISBELL

(3) project.pluginRepositories
(4) project.organization
(5) project.licenses
(6) project.developers
(7) project.contributors
(8) project.mailingLists
(9) project.ciManagement

(10) project.issueManagement
(11) project.distributionsManagement.repository
(12) project.distributionsManagement.snapshotRepository
(13) project.distributionsManagement.site

4.4. Properties Excluded From Inheritance. A child project does not inherit
the following properties from its specified parent project1. All other properties are
inherited, unless otherwise noted below.

(1) project.parent
(2) project.name
(3) project.packaging
(4) project.profiles
(5) project.version
(6) project.groupId
(7) project.prerequisites
(8) project.distributionManagement.relocation

4.5. Marking Containers as Final (Or Not Inherited). A parent project can
set an inherited property within the following elements of the pom. This will mark
the container as final, thus preventing inheritance:

(1) project.build.plugins.plugin
(2) project.build.plugins.plugin.executions.execution
(3) project.build.pluginManagement.plugins.plugin
(4) project.build.pluginManagement.plugins.plugin.executions.execution
(5) project.profiles.profile.build.plugins.plugin
(6) project.profiles.profile.build.plugins.plugin.executions.execution
(7) project.profiles.profile.build.pluginManagement.plugins.plugin
(8) project.profiles.profile.build.pluginManagement.plugins.plugin.executions.execution
(9) project.reporting.plugins.plugin

(10) project.reporting.plugins.plugin.reportSets.reportSet
(11) project.profiles.profile.reporting.plugins.plugin
(12) project.profiles.profile.reporting.plugins.plugin.reportSets.reportSet

1Technically, project.version, project.groupId and project.artifactId are not inherited from the
parent pom. They do, however, have the values of project.parent.version, project.parent.groupId
and project.parent.artifactId implicitly applied from the same pom.

MAVEN PROJECT BUILDER SPECIFICATION 7

Some examples demonstrating use within the project model:

<plugin>

<groupId>org.apache.maven</groupId>

<artifactId>sample</artifactId>

<version>1.0</version>

<inherited>false</inherited>

</plugin>

<plugin>

<groupId>org.apache.maven</groupId>

<artifactId>sample</artifactId>

<version>1.0</version>

<executions>

<execution>

<inherited>false</inherited>

</execution>

</executions>

</plugin>

4.6. Artifact Inheritance (Model Container).

4.6.1. Defined Nodes. Within the project there are a number of nodes which con-
tain artifactId, groupId and version. These nodes may be inherited or joined.

(1) project.dependencies.dependency
(2) project.build.plugins.plugin
(3) project.build.plugins.plugin.dependencies.dependency
(4) project.build.plugins.plugin.dependencies.dependency.exclusions.exclusion
(5) project.dependencyManagement.dependencies.dependency
(6) project.build.pluginManagement.plugins.plugin
(7) project.build.pluginManagement.plugins.plugin.dependencies.dependency
(8) project.reporting.plugins.plugin
(9) project.build.extensions.extension

4.6.2. Rules. Let the parent project be A and the child project be B . Let both
αi ⊂ A and βi ⊂ B be one of the elements listed above. For example, α1 would
contain all the elements of a project dependency within the parent project.

Both αi ⊂ A and βi ⊂ A, contain at least the following elements:

(1) project.groupId (required)
(2) project.artifactId (required)
(3) project.version (default value - null)
(4) project.type (default value - jar)
(5) project.classifier (default value - null)

(1-3) may be values referencing project.parent.groupId, project.parent.artifactId,
project.parent.version, where they are not explicitly defined.

8 SHANE ISBELL

More precisely we have:
∀i∀jαi = {〈groupId, valuej〉i, 〈artifactId, valuej+1〉i, 〈version, valuej+2〉i, . . .}.
Now define the following rules:

(1) R1 ≡ groupId(value)αi = groupId(value)βi∧artifactId(value)αi = artifactId(value)βi∧
type(value)αi = type(value)βi ∧ classifier(value)αi = classifier(value)βi

(2) R2 ≡ version(value)αi = version(value)βi

The inheritance rules are JOIN, NOP, and DELETE:

(1) R1 ∧R2 ⇒ Bnew = B ∪ αi − (αi ∩ βi)
(2) ¬R1 ⇒ Bnew = B ∪ αi
(3) R1 ∧ ¬R2 ⇒ Bnew = B

Note that model container rules are performed after basic sorting and collapsing
of the model inheritance. So a NOP operation means that a model container from
the parent is left within the model, meaning there is a union of the elements. A
delete means that the model container from the parent is removed, leaving the set
the same.

4.6.3. Default Group IDs. To maintain backwards compatibility, the following el-
ements are assigned a default groupId of org.apache.maven.plugins, if the groupId
is not specified.

(1) project.build.plugins.plugin
(2) project.profiles.profile.build.plugins.plugin
(3) project.build.pluginManagement.plugins.plugin
(4) project.build.profiles.profile.pluginManagement.plugins.plugin
(5) project.reporting.plugins.plugin
(6) project.profiles.profile.reporting.plugins.plugin

4.7. Id Inheritance (Model Container).

4.7.1. Defined Nodes. Within the project there are a number of nodes which con-
tain id. Each of the nodes below is an element of a collection, meaning there may
be more than one. The ID is used to determine whether the containers should be
joined, rather than just added to the collection..

(1) project.pluginRepositories.pluginRepository
(2) project.repositories.repository
(3) project.reporting.plugins.plugin.reportSets.reportSet
(4) project.profiles.profile
(5) project.build.plugins.plugin.executions.execution

4.7.2. Rules. If an id exists in both the parent and child pom and the ids are equal,
then join the nodes, otherwise inherit the node.

MAVEN PROJECT BUILDER SPECIFICATION 9

4.8. Plugin Configuration Inheritance. Plugin nodes are treated as a set. If
a child pom contains the same element as a parent pom, then the parent pom
element will not be inherited/joined unless the child element contains a property
combine.children=”append”. In this case, it will treat the element as a collection.

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-compiler-plugin</artifactId>

<configuration>

<testExcludes combine.children="append">

<testExclude implementation="java.lang.String">

**/PersonThreeTest.java

</testExclude>

</testExcludes>

</configuration>

</plugin>

If the parent pom contains an element that the child pom does not have, the
element will be inherited.

5. Management Rules

5.1. Dependency/Plugin Management. Dependency and plugin management
are treated the same, so we will only cover dependency management. Our initial
set has already been processed for inheritance and interpolated by the time these
rules are applied.

Let A be the set of project.dependencies.dependency model containers (model
containers are themselves sets of model properties).

Let B be the set of project.dependencyManagement.dependencies.dependency
model containers. B is processed such that each dependencyManagement refer-
ence within its uris is removed. Thus the uris exactly match those contained
within A. Call this transformed set B′.

Now we can apply the same artifact container rules between each B′
i and Aj.

as those defined in section 3.4.

6. Interpolation Rules

6.1. Type of Properties. There are four types of properties in the following or-
der of precedence: maven properties, system (user) properties, project properties,
environment (execution) variables.

6.1.1. Maven Properties. There are two maven specific properties that can be used:
${basedir} (or ${pom.basedir} or ${project.basedir}) and ${build.timestamp}.
basedir denotes the project directory of the executing pom, while build.timestamp
denotes the time that the build started.

10 SHANE ISBELL

<build>

<directory>${project.basedir}/target</directory>

<sourceDirectory>${project.basedir}/src/main/java</sourceDirectory>

</build>

6.1.2. System Properties. These properties are defined on the command line through
-D option. For instance, -DjunitVersion=3.8. These property values take prece-
dence over project and environment properties and will override them.

6.1.3. Project Properties. These properties are derived directly from the pom it-
self: ${project.version}, ${project.artifactId}... So in the code snippet below,
project.build.finalname will be resolved to maven-3.0-SNAPSHOT.

Note pom is an alias for project, so you can also reference the properties through
${pom.version}, ${pom.artifactId}... , although project is preferred.

These types of properties also include special rules for the project.properties
section of the pom. The elements under the properties section can directly be
referenced, by name, from within other elements of the pom. For example, the
project.properties section defines junitVersion, allowing the project.build.dependencies.dependency.version
to reference the value by inserting ${junitVersion}
<project>

<groupId>org.apache.maven</groupId>

<artifactId>maven</artifactId>

<version>3.0-SNAPSHOT</version>

<build>

<finalName>${project.artifactId}-${project.version}</finalName>

</build>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>${junitVersion}</version>

<scope>test</scope>

</dependency>

</dependencies>

<properties>

<junitVersion>3.8.1</junitVersion>

</properties>

</project>

Keep in mind that if you set -DjunitVersion=3.8 on the command line, then
this value would be used for interpolation, not the pom specified one.

6.1.4. Environment Properties. The properties are taken from the environment
and hold the lowest level of precedence.

MAVEN PROJECT BUILDER SPECIFICATION 11

6.2. Processing Rules. The pom XML is flattened to a list of model properties
(this is part of the inheritance processing). The interpolator property list will be
referred to as interpolator properties.

6.2.1. Preprocessing. The initial interpolator property list is constructed and sorted
in order of maven properties, system properties, project properties and environ-
ment properties. Being a list, it contains duplicate property keys that may refer-
ence different values. A common example occurs when overriding a pom property
through the command line -D. So all lower duplicate key values are eliminated,
resulting in a set of interpolator properties, where order does not matter.

The maven property ${project.basedir} is only added to the initial list if the pom
being interpolated is within the build (not a dependency within the repository).

6.2.2. Pass 1 -withhold using build directories as interpolator properties. In this
pass, the list is preprocessed into a set, but excludes any of the build directories
from the interpolator list. In other words, the build directories can be interpolated
but they can’t be used to interpolate other properties. Interpolating is simply the
iteration of all interpolator properties over model properties.

6.2.3. Pass 2 - set absolute paths on build directories. At this point, the build
directories are completely interpolated but they may or may not contain absolute
paths. So each build model property is checked and if it contains a relative path,
the absolute path is set based on the ${project.basedir} location.

6.2.4. Pass 3- use build directories as interpolator properties. In this pass, all
model properties that contain a build directory reference are interpolated with
the build directory interpolator properties, which were withheld from pass 1. Now
all directory paths within the pom contain absolute references.

6.3. Interpolation and Profiles. Active profiles are applied prior to interpola-
tion so that any project.profiles.profile.properties defined within an active profile
can be used as an interpolation property [Still to be implemented]

7. Profiles

Profiles allow the developer to conditionally add project information to the
project model. Each profile has an activation property, with an associated matcher.

We have the following five matchers:

(1) Default - allows to specify a profile that will be active (provided no other
profiles are matched)

(2) File - allows matching of profile based on the existence or nonexistence of
a file

(3) JDK - allows matching profile based on JDK
(4) Operating System - allows matching profile based on operating system
(5) Property - allows matching profile based a user or environmental variable

12 SHANE ISBELL

7.1. Default Profile Matcher. Occurs if project/profiles/profile/activation/activeByDefault
exists in the profile. If no other profiles are matched this one will be used.

7.2. File. This matcher will check for the existence (or nonexistence) of files. If

• project/profiles/profile/activation/file/missing does not exist or
• project/profiles/profile/activation/file/exists,

the profile will activate.

7.3. JDK. This matcher will check if project/profiles/profile/activation/jdk value
matches the current JDK version in use for the build.

8. Model Container Operations

8.1. Definitions.

Mode Container Rule: Rule that determines whether the model proper-
ties between sets A and B match.

M-Operator: Model Container Operator - an operation on Rules. The re-
sult of the M-Operator is a set operation. Each resulting set of an M-
Operator has to be equal to the resulting set of another M-Operator defined
within the system.

8.2. M-Operators.

8.2.1. Definitions. The Maven system defines the following operators:

JOIN: M(R,R) = γ − (αi ∩ βi)
NOP: M(¬R,R) = γ
DELETE: M(R,¬R) = γ − αi

Note that γ = B ∪ αi. This is the set that results after basic sorting and inheritance
have been applied to the models.

There are some interesting properties of the above definitions. For example, a
JOIN is equivalent to a NOP when the intersection of the model containers is null,
or a JOIN is equivalent to a DELETE if there is no child model container.

Also these definitions allow us to clearly see how to undo an operation. For
example, say we did a DELETE and now we want to revert the operation. We
merely need to add back in the properties of the parent model container, giving us
a NOP. To revert a JOIN, we add back in the intersection of the parent and child
model containers.

8.2.2. Negation. Define negation on the operators as:

(1) ¬M(R,R) = M(R,¬R)
(2) ¬M(¬R,R) = M(¬R,R)
(3) ¬M(R,¬R) = M(R,R)

MAVEN PROJECT BUILDER SPECIFICATION 13

Negation of a JOIN is a DELETE, negation of a NOP is a NOP, negation of a
DELETE is a JOIN. To understand the mechanics of negation, we need to look at
the underlying set operations.

Take (3), where we negate a DELETE. Since we have defined a negation of a
DELETE as a JOIN, the set operations for a negation would be to add in elements
of the parent model container and then to remove the intersection of the child and
parent model containers.

8.2.3. Addition. Define addition operators as:

Sum of JOINs:
∑n

i=

∑m
j=M(Rαi,βj

 ,Rαi,βj
)

Sum of NOPs:
∑n

i=

∑m
j=M(¬Rαi,βj

 ,Rαi,βj
)

Sum of DELETEs:
∑n

i=

∑m
j=M(Rαi,βj

 ,¬Rαi,βj
)

Take the case of Sum of Joins. Let i = 1, meaning there is only one parent
model container. Then we have:

n∑
i=1

m∑
j=1

M(Rαi,βj

1 ,Rαi,βj

2) =
m∑
j=1

M(Rα1,βj

1 ,Rα1,βj

2)(1)

= B ∪ α1 − (α1 ∩ β1)− (α1 ∩ β2)− · · · − (α1 ∩ βm)(2)

= B ∪ α1 − (α1 ∩ (β1 ∪ β2 ∪ · · · ∪ βm)(3)

So we simplify the operation to just adding the parent model container to the
child model, and then removing the intersection between that parent model con-
tainer and the union of all child model container. Thus we can simply the calcu-
lation for multiple joins, allowing more efficient processing on the underlying data
model.

Appendix A. Definitions

Collection: Any model property with a URI ending in #collection
Canonical Data Format: A set of model properties including all possible

elements of the Maven model
Delete: Delete Model Container Action. Processing this rule on a model

container will delete it’s model properties from a model data source.
Element: A model property
Interpolation:
Join: Join Model Container Action. Processing this rule on a model con-

tainer will join it’s model properties with another container’s model prop-
erties.

Mixin: An abstract model which needn’t contain all the required elements
of the model.

Model Container: A container for a set of Model Properties associated with
a specific URI.

14 SHANE ISBELL

Model Container Action: One of the following actions: delete, join, nop
that may be performed on a Model Container.

Model Data Source: A class that provides operations for deleting, joining
and querying Model Containers.

Model Property: A property of the model that consists of a URI and a
value, which may be null.

Model Transformer: A class that is responsible for transforming from a
model format to the canonical data model. It can also optionally perform
various domain specific rules and processing.

Node: A model container
NOP: No operation Model Container Action. Processing this rule on a

model container will leave the model properties of the model container
untouched.

Profile: - Project information added the project model based on a Profile
ActivationProperty

Profile Activation Property: - Property that a developer can specify that
triggers the applying of a profile to it’s containing project model.

Set: Any model property with a URI ending in #set

