nifi/nifi-python-extensions/nifi-text-embeddings-module/src/main/python/ChunkDocument.py

285 lines
13 KiB
Python
Raw Normal View History

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from langchain.text_splitter import Language
from nifiapi.flowfiletransform import FlowFileTransform, FlowFileTransformResult
from nifiapi.properties import PropertyDescriptor, StandardValidators, PropertyDependency, ExpressionLanguageScope
from nifiapi.documentation import use_case, multi_processor_use_case, ProcessorConfiguration
SPLIT_BY_CHARACTER = 'Split by Character'
SPLIT_CODE = 'Split Code'
RECURSIVELY_SPLIT_BY_CHARACTER = 'Recursively Split by Character'
TEXT_KEY = "text"
METADATA_KEY = "metadata"
@use_case(
description="Create chunks of text from a single larger chunk.",
notes="The input for this use case is expected to be a FlowFile whose content is a JSON Lines document, with each line having a 'text' and a 'metadata' element.",
keywords=["embedding", "vector", "text", "rag", "retrieval augmented generation"],
configuration="""
Set "Input Format" to "Plain Text"
Set "Element Strategy" to "Single Document"
"""
)
@multi_processor_use_case(
description="""
Chunk Plaintext data in order to prepare it for storage in a vector store. The output is in "json-lines" format,
containing the chunked data as text, as well as metadata pertaining to the chunk.""",
notes="The input for this use case is expected to be a FlowFile whose content is a plaintext document.",
keywords=["embedding", "vector", "text", "rag", "retrieval augmented generation"],
configurations=[
ProcessorConfiguration(
processor_type="ParseDocument",
configuration="""
Set "Input Format" to "Plain Text"
Set "Element Strategy" to "Single Document"
Connect the 'success' Relationship to ChunkDocument.
"""
),
ProcessorConfiguration(
processor_type="ChunkDocument",
configuration="""
Set the following properties:
"Chunking Strategy" = "Recursively Split by Character"
"Separator" = "\\n\\n,\\n, ,"
"Separator Format" = "Plain Text"
"Chunk Size" = "4000"
"Chunk Overlap" = "200"
"Keep Separator" = "false"
Connect the 'success' Relationship to the appropriate destination to store data in the desired vector store.
"""
)
])
@multi_processor_use_case(
description="""
Parse and chunk the textual contents of a PDF document in order to prepare it for storage in a vector store. The output is in "json-lines" format,
containing the chunked data as text, as well as metadata pertaining to the chunk.""",
notes="The input for this use case is expected to be a FlowFile whose content is a PDF document.",
keywords=["pdf", "embedding", "vector", "text", "rag", "retrieval augmented generation"],
configurations=[
ProcessorConfiguration(
processor_type="ParseDocument",
configuration="""
Set "Input Format" to "PDF"
Set "Element Strategy" to "Single Document"
Set "Include Extracted Metadata" to "false"
Connect the 'success' Relationship to ChunkDocument.
"""
),
ProcessorConfiguration(
processor_type="ChunkDocument",
configuration="""
Set the following properties:
"Chunking Strategy" = "Recursively Split by Character"
"Separator" = "\\n\\n,\\n, ,"
"Separator Format" = "Plain Text"
"Chunk Size" = "4000"
"Chunk Overlap" = "200"
"Keep Separator" = "false"
Connect the 'success' Relationship to the appropriate destination to store data in the desired vector store.
"""
)
])
class ChunkDocument(FlowFileTransform):
class Java:
implements = ['org.apache.nifi.python.processor.FlowFileTransform']
class ProcessorDetails:
version = '2.0.0-SNAPSHOT'
description = """Chunks incoming documents that are formatted as JSON Lines into chunks that are appropriately sized for creating Text Embeddings.
The input is expected to be in "json-lines" format, with each line having a 'text' and a 'metadata' element.
Each line will then be split into one or more lines in the output."""
tags = ["text", "split", "chunk", "langchain", "embeddings", "vector", "machine learning", "ML", "artificial intelligence", "ai", "document"]
dependencies = ['langchain']
CHUNK_STRATEGY = PropertyDescriptor(
name="Chunking Strategy",
description="Specifies which splitter should be used to split the text",
allowable_values=[RECURSIVELY_SPLIT_BY_CHARACTER, SPLIT_BY_CHARACTER, SPLIT_CODE],
required=True,
default_value=RECURSIVELY_SPLIT_BY_CHARACTER
)
SEPARATOR = PropertyDescriptor(
name="Separator",
description="Specifies the character sequence to use for splitting apart the text. If using a Chunking Strategy of Recursively Split by Character, " +
"it is a comma-separated list of character sequences. Meta-characters \\n, \\r and \\t are automatically un-escaped.",
required=True,
default_value="\\n\\n,\\n, ,",
validators=[StandardValidators.NON_EMPTY_VALIDATOR],
dependencies=[PropertyDependency(CHUNK_STRATEGY, SPLIT_BY_CHARACTER, RECURSIVELY_SPLIT_BY_CHARACTER)],
expression_language_scope=ExpressionLanguageScope.FLOWFILE_ATTRIBUTES
)
SEPARATOR_FORMAT = PropertyDescriptor(
name="Separator Format",
description="Specifies how to interpret the value of the <Separator> property",
required=True,
default_value="Plain Text",
allowable_values=["Plain Text", "Regular Expression"],
dependencies=[PropertyDependency(CHUNK_STRATEGY, SPLIT_BY_CHARACTER, RECURSIVELY_SPLIT_BY_CHARACTER)]
)
CHUNK_SIZE = PropertyDescriptor(
name="Chunk Size",
description="The maximum size of a chunk that should be returned",
required=True,
default_value="4000",
validators=[StandardValidators.POSITIVE_INTEGER_VALIDATOR]
)
CHUNK_OVERLAP = PropertyDescriptor(
name="Chunk Overlap",
description="The number of characters that should be overlapped between each chunk of text",
required=True,
default_value="200",
validators=[StandardValidators.NON_NEGATIVE_INTEGER_VALIDATOR]
)
KEEP_SEPARATOR = PropertyDescriptor(
name="Keep Separator",
description="Whether or not to keep the text separator in each chunk of data",
required=True,
default_value="false",
allowable_values=["true", "false"],
dependencies=[PropertyDependency(CHUNK_STRATEGY, SPLIT_BY_CHARACTER, RECURSIVELY_SPLIT_BY_CHARACTER)]
)
STRIP_WHITESPACE = PropertyDescriptor(
name="Strip Whitespace",
description="Whether or not to strip the whitespace at the beginning and end of each chunk",
required=True,
default_value="true",
allowable_values=["true", "false"],
dependencies=[PropertyDependency(CHUNK_STRATEGY, SPLIT_BY_CHARACTER, RECURSIVELY_SPLIT_BY_CHARACTER)]
)
LANGUAGE = PropertyDescriptor(
name="Language",
description="The language to use for the Code's syntax",
required=True,
default_value="python",
allowable_values=[e.value for e in Language],
dependencies=[PropertyDependency(CHUNK_STRATEGY, SPLIT_CODE)]
)
property_descriptors = [CHUNK_STRATEGY,
SEPARATOR,
SEPARATOR_FORMAT,
CHUNK_SIZE,
CHUNK_OVERLAP,
KEEP_SEPARATOR,
STRIP_WHITESPACE]
def __init__(self, **kwargs):
pass
def getPropertyDescriptors(self):
return self.property_descriptors
def split_docs(self, context, flowfile, documents):
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter
strategy = context.getProperty(self.CHUNK_STRATEGY).getValue()
if strategy == SPLIT_BY_CHARACTER:
text_splitter = CharacterTextSplitter(
separator = context.getProperty(self.SEPARATOR).evaluateAttributeExpressions(flowfile).getValue(),
keep_separator = context.getProperty(self.KEEP_SEPARATOR).asBoolean(),
is_separator_regex = context.getProperty(self.SEPARATOR_FORMAT).getValue() == 'Regular Expression',
chunk_size = context.getProperty(self.CHUNK_SIZE).asInteger(),
chunk_overlap = context.getProperty(self.CHUNK_OVERLAP).asInteger(),
length_function = len,
strip_whitespace = context.getProperty(self.STRIP_WHITESPACE).asBoolean()
)
elif strategy == SPLIT_CODE:
text_splitter = RecursiveCharacterTextSplitter.from_language(
language=context.getProperty(self.LANGUAGE).getValue(),
chunk_size = context.getProperty(self.CHUNK_SIZE).asInteger(),
chunk_overlap = context.getProperty(self.CHUNK_OVERLAP).asInteger()
)
else:
separator_text = context.getProperty(self.SEPARATOR).evaluateAttributeExpressions(flowfile).getValue()
splits = separator_text.split(",")
unescaped = []
for split in splits:
unescaped.append(split.replace("\\n", "\n").replace("\\r", "\r").replace("\\t", "\t"))
text_splitter = RecursiveCharacterTextSplitter(
separators = unescaped,
keep_separator = context.getProperty(self.KEEP_SEPARATOR).asBoolean(),
is_separator_regex = context.getProperty(self.SEPARATOR_FORMAT).getValue() == 'Regular Expression',
chunk_size = context.getProperty(self.CHUNK_SIZE).asInteger(),
chunk_overlap = context.getProperty(self.CHUNK_OVERLAP).asInteger(),
length_function = len,
strip_whitespace = context.getProperty(self.STRIP_WHITESPACE).asBoolean()
)
splits = text_splitter.split_documents(documents)
return splits
def to_json(self, docs) -> str:
json_docs = []
i = 0
for doc in docs:
doc.metadata['chunk_index'] = i
doc.metadata['chunk_count'] = len(docs)
i += 1
json_doc = json.dumps({
TEXT_KEY: doc.page_content,
METADATA_KEY: doc.metadata
})
json_docs.append(json_doc)
return "\n".join(json_docs)
def load_docs(self, flowfile):
from langchain.schema import Document
flowfile_contents = flowfile.getContentsAsBytes().decode()
docs = []
for line in flowfile_contents.split("\n"):
stripped = line.strip()
if stripped == "":
continue
json_element = json.loads(stripped)
page_content = json_element.get(TEXT_KEY)
if page_content is None:
continue
metadata = json_element.get(METADATA_KEY)
if metadata is None:
metadata = {}
doc = Document(page_content=page_content, metadata=metadata)
docs.append(doc)
return docs
def transform(self, context, flowfile):
documents = self.load_docs(flowfile)
split_docs = self.split_docs(context, flowfile, documents)
output_json = self.to_json(split_docs)
attributes = {"document.count": str(len(split_docs))}
return FlowFileTransformResult("success", contents=output_json, attributes=attributes)