mirror of https://github.com/apache/nifi.git
NIFI-1868: Downgrade to Hive 1.2.1 and remove ConvertAvroToORC
Signed-off-by: Bryan Bende <bbende@apache.org>
This commit is contained in:
parent
c2019b9339
commit
59659232c7
|
@ -26,8 +26,7 @@
|
|||
<packaging>jar</packaging>
|
||||
|
||||
<properties>
|
||||
<hive.version>2.0.1</hive.version>
|
||||
<orc.version>1.1.2</orc.version>
|
||||
<hive.version>1.2.1</hive.version>
|
||||
</properties>
|
||||
|
||||
|
||||
|
@ -139,11 +138,6 @@
|
|||
</exclusion>
|
||||
</exclusions>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.orc</groupId>
|
||||
<artifactId>orc-core</artifactId>
|
||||
<version>${orc.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.hive.hcatalog</groupId>
|
||||
<artifactId>hive-hcatalog-streaming</artifactId>
|
||||
|
@ -168,6 +162,10 @@
|
|||
<artifactId>hive-hcatalog-core</artifactId>
|
||||
<version>${hive.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.hadoop</groupId>
|
||||
<artifactId>hadoop-mapreduce-client-core</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.hadoop</groupId>
|
||||
<artifactId>hadoop-common</artifactId>
|
||||
|
|
|
@ -1,310 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.nifi.processors.hive;
|
||||
|
||||
import org.apache.avro.Schema;
|
||||
import org.apache.avro.file.DataFileStream;
|
||||
import org.apache.avro.generic.GenericDatumReader;
|
||||
import org.apache.avro.generic.GenericRecord;
|
||||
import org.apache.commons.lang3.mutable.MutableInt;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.Path;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch;
|
||||
import org.apache.nifi.annotation.behavior.InputRequirement;
|
||||
import org.apache.nifi.annotation.behavior.SideEffectFree;
|
||||
import org.apache.nifi.annotation.behavior.SupportsBatching;
|
||||
import org.apache.nifi.annotation.behavior.WritesAttribute;
|
||||
import org.apache.nifi.annotation.behavior.WritesAttributes;
|
||||
import org.apache.nifi.annotation.documentation.CapabilityDescription;
|
||||
import org.apache.nifi.annotation.documentation.Tags;
|
||||
import org.apache.nifi.annotation.lifecycle.OnScheduled;
|
||||
import org.apache.nifi.components.PropertyDescriptor;
|
||||
import org.apache.nifi.flowfile.FlowFile;
|
||||
import org.apache.nifi.flowfile.attributes.CoreAttributes;
|
||||
import org.apache.nifi.processor.AbstractProcessor;
|
||||
import org.apache.nifi.processor.DataUnit;
|
||||
import org.apache.nifi.processor.ProcessContext;
|
||||
import org.apache.nifi.processor.ProcessSession;
|
||||
import org.apache.nifi.processor.Relationship;
|
||||
import org.apache.nifi.processor.exception.ProcessException;
|
||||
import org.apache.nifi.processor.io.StreamCallback;
|
||||
import org.apache.nifi.processor.util.StandardValidators;
|
||||
import org.apache.nifi.util.hive.HiveJdbcCommon;
|
||||
import org.apache.nifi.util.hive.HiveUtils;
|
||||
import org.apache.nifi.util.orc.OrcFlowFileWriter;
|
||||
import org.apache.nifi.util.orc.OrcUtils;
|
||||
import org.apache.orc.CompressionKind;
|
||||
import org.apache.orc.OrcFile;
|
||||
import org.apache.orc.TypeDescription;
|
||||
|
||||
import java.io.BufferedInputStream;
|
||||
import java.io.BufferedOutputStream;
|
||||
import java.io.IOException;
|
||||
import java.io.InputStream;
|
||||
import java.io.OutputStream;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.HashSet;
|
||||
import java.util.List;
|
||||
import java.util.Set;
|
||||
import java.util.concurrent.atomic.AtomicInteger;
|
||||
import java.util.concurrent.atomic.AtomicReference;
|
||||
|
||||
/**
|
||||
* The ConvertAvroToORC processor takes an Avro-formatted flow file as input and converts it into ORC format.
|
||||
*/
|
||||
@SideEffectFree
|
||||
@SupportsBatching
|
||||
@Tags({"avro", "orc", "hive", "convert"})
|
||||
@InputRequirement(InputRequirement.Requirement.INPUT_REQUIRED)
|
||||
@CapabilityDescription("Converts an Avro record into ORC file format. This processor provides a direct mapping of an Avro record to an ORC record, such "
|
||||
+ "that the resulting ORC file will have the same hierarchical structure as the Avro document. If an incoming FlowFile contains a stream of "
|
||||
+ "multiple Avro records, the resultant FlowFile will contain a ORC file containing all of the Avro records. If an incoming FlowFile does "
|
||||
+ "not contain any records, an empty ORC file is the output.")
|
||||
@WritesAttributes({
|
||||
@WritesAttribute(attribute = "mime.type", description = "Sets the mime type to application/octet-stream"),
|
||||
@WritesAttribute(attribute = "filename", description = "Sets the filename to the existing filename with the extension replaced by / added to by .orc"),
|
||||
@WritesAttribute(attribute = "record.count", description = "Sets the number of records in the ORC file."),
|
||||
@WritesAttribute(attribute = "hive.ddl", description = "Creates a partial Hive DDL statement for creating a table in Hive from this ORC file. "
|
||||
+ "This can be used in ReplaceText for setting the content to the DDL. To make it valid DDL, add \"LOCATION '<path_to_orc_file_in_hdfs>'\", where "
|
||||
+ "the path is the directory that contains this ORC file on HDFS. For example, ConvertAvroToORC can send flow files to a PutHDFS processor to send the file to "
|
||||
+ "HDFS, then to a ReplaceText to set the content to this DDL (plus the LOCATION clause as described), then to PutHiveQL processor to create the table "
|
||||
+ "if it doesn't exist.")
|
||||
})
|
||||
public class ConvertAvroToORC extends AbstractProcessor {
|
||||
|
||||
// Attributes
|
||||
public static final String ORC_MIME_TYPE = "application/octet-stream";
|
||||
public static final String HIVE_DDL_ATTRIBUTE = "hive.ddl";
|
||||
public static final String RECORD_COUNT_ATTRIBUTE = "record.count";
|
||||
|
||||
|
||||
// Properties
|
||||
public static final PropertyDescriptor ORC_CONFIGURATION_RESOURCES = new PropertyDescriptor.Builder()
|
||||
.name("orc-config-resources")
|
||||
.displayName("ORC Configuration Resources")
|
||||
.description("A file or comma separated list of files which contains the ORC configuration (hive-site.xml, e.g.). Without this, Hadoop "
|
||||
+ "will search the classpath for a 'hive-site.xml' file or will revert to a default configuration. Please see the ORC documentation for more details.")
|
||||
.required(false).addValidator(HiveUtils.createMultipleFilesExistValidator()).build();
|
||||
|
||||
public static final PropertyDescriptor STRIPE_SIZE = new PropertyDescriptor.Builder()
|
||||
.name("orc-stripe-size")
|
||||
.displayName("Stripe Size")
|
||||
.description("The size of the memory buffer (in bytes) for writing stripes to an ORC file")
|
||||
.required(true)
|
||||
.addValidator(StandardValidators.DATA_SIZE_VALIDATOR)
|
||||
.defaultValue("100 KB")
|
||||
.build();
|
||||
|
||||
public static final PropertyDescriptor BUFFER_SIZE = new PropertyDescriptor.Builder()
|
||||
.name("orc-buffer-size")
|
||||
.displayName("Buffer Size")
|
||||
.description("The maximum size of the memory buffers (in bytes) used for compressing and storing a stripe in memory. This is a hint to the ORC writer, "
|
||||
+ "which may choose to use a smaller buffer size based on stripe size and number of columns for efficient stripe writing and memory utilization.")
|
||||
.required(true)
|
||||
.addValidator(StandardValidators.DATA_SIZE_VALIDATOR)
|
||||
.defaultValue("10 KB")
|
||||
.build();
|
||||
|
||||
public static final PropertyDescriptor COMPRESSION_TYPE = new PropertyDescriptor.Builder()
|
||||
.name("orc-compression-type")
|
||||
.displayName("Compression Type")
|
||||
.required(true)
|
||||
.allowableValues("NONE", "ZLIB", "SNAPPY", "LZO")
|
||||
.defaultValue("NONE")
|
||||
.build();
|
||||
|
||||
public static final PropertyDescriptor HIVE_TABLE_NAME = new PropertyDescriptor.Builder()
|
||||
.name("orc-hive-table-name")
|
||||
.displayName("Hive Table Name")
|
||||
.description("An optional table name to insert into the hive.ddl attribute. The generated DDL can be used by "
|
||||
+ "a PutHiveQL processor (presumably after a PutHDFS processor) to create a table backed by the converted ORC file. "
|
||||
+ "If this property is not provided, the full name (including namespace) of the incoming Avro record will be normalized "
|
||||
+ "and used as the table name.")
|
||||
.required(false)
|
||||
.expressionLanguageSupported(true)
|
||||
.addValidator(StandardValidators.NON_BLANK_VALIDATOR)
|
||||
.build();
|
||||
|
||||
// Relationships
|
||||
static final Relationship REL_SUCCESS = new Relationship.Builder()
|
||||
.name("success")
|
||||
.description("A FlowFile is routed to this relationship after it has been converted to ORC format.")
|
||||
.build();
|
||||
static final Relationship REL_FAILURE = new Relationship.Builder()
|
||||
.name("failure")
|
||||
.description("A FlowFile is routed to this relationship if it cannot be parsed as Avro or cannot be converted to ORC for any reason")
|
||||
.build();
|
||||
|
||||
private final static List<PropertyDescriptor> propertyDescriptors;
|
||||
private final static Set<Relationship> relationships;
|
||||
|
||||
private volatile Configuration orcConfig;
|
||||
|
||||
/*
|
||||
* Will ensure that the list of property descriptors is built only once.
|
||||
* Will also create a Set of relationships
|
||||
*/
|
||||
static {
|
||||
List<PropertyDescriptor> _propertyDescriptors = new ArrayList<>();
|
||||
_propertyDescriptors.add(ORC_CONFIGURATION_RESOURCES);
|
||||
_propertyDescriptors.add(STRIPE_SIZE);
|
||||
_propertyDescriptors.add(BUFFER_SIZE);
|
||||
_propertyDescriptors.add(COMPRESSION_TYPE);
|
||||
_propertyDescriptors.add(HIVE_TABLE_NAME);
|
||||
propertyDescriptors = Collections.unmodifiableList(_propertyDescriptors);
|
||||
|
||||
Set<Relationship> _relationships = new HashSet<>();
|
||||
_relationships.add(REL_SUCCESS);
|
||||
_relationships.add(REL_FAILURE);
|
||||
relationships = Collections.unmodifiableSet(_relationships);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected List<PropertyDescriptor> getSupportedPropertyDescriptors() {
|
||||
return propertyDescriptors;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Set<Relationship> getRelationships() {
|
||||
return relationships;
|
||||
}
|
||||
|
||||
@OnScheduled
|
||||
public void setup(ProcessContext context) {
|
||||
boolean confFileProvided = context.getProperty(ORC_CONFIGURATION_RESOURCES).isSet();
|
||||
if (confFileProvided) {
|
||||
final String configFiles = context.getProperty(ORC_CONFIGURATION_RESOURCES).getValue();
|
||||
orcConfig = HiveJdbcCommon.getConfigurationFromFiles(configFiles);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public void onTrigger(final ProcessContext context, final ProcessSession session) throws ProcessException {
|
||||
FlowFile flowFile = session.get();
|
||||
if (flowFile == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
try {
|
||||
long startTime = System.currentTimeMillis();
|
||||
final long stripeSize = context.getProperty(STRIPE_SIZE).asDataSize(DataUnit.B).longValue();
|
||||
final int bufferSize = context.getProperty(BUFFER_SIZE).asDataSize(DataUnit.B).intValue();
|
||||
final CompressionKind compressionType = CompressionKind.valueOf(context.getProperty(COMPRESSION_TYPE).getValue());
|
||||
final AtomicReference<Schema> hiveAvroSchema = new AtomicReference<>(null);
|
||||
final AtomicInteger totalRecordCount = new AtomicInteger(0);
|
||||
final String fileName = flowFile.getAttribute(CoreAttributes.FILENAME.key());
|
||||
flowFile = session.write(flowFile, new StreamCallback() {
|
||||
@Override
|
||||
public void process(final InputStream rawIn, final OutputStream rawOut) throws IOException {
|
||||
try (final InputStream in = new BufferedInputStream(rawIn);
|
||||
final OutputStream out = new BufferedOutputStream(rawOut);
|
||||
final DataFileStream<GenericRecord> reader = new DataFileStream<>(in, new GenericDatumReader<>())) {
|
||||
|
||||
// Create ORC schema from Avro schema
|
||||
Schema avroSchema = reader.getSchema();
|
||||
TypeDescription orcSchema = OrcUtils.getOrcField(avroSchema);
|
||||
|
||||
if (orcConfig == null) {
|
||||
orcConfig = new Configuration();
|
||||
}
|
||||
OrcFile.WriterOptions options = OrcFile.writerOptions(orcConfig)
|
||||
.setSchema(orcSchema)
|
||||
.stripeSize(stripeSize)
|
||||
.bufferSize(bufferSize)
|
||||
.compress(compressionType)
|
||||
.version(OrcFile.Version.CURRENT);
|
||||
|
||||
OrcFlowFileWriter orcWriter = new OrcFlowFileWriter(out, new Path(fileName), options);
|
||||
try {
|
||||
VectorizedRowBatch batch = orcSchema.createRowBatch();
|
||||
int recordCount = 0;
|
||||
int recordsInBatch = 0;
|
||||
GenericRecord currRecord = null;
|
||||
while (reader.hasNext()) {
|
||||
currRecord = reader.next(currRecord);
|
||||
List<Schema.Field> fields = currRecord.getSchema().getFields();
|
||||
if (fields != null) {
|
||||
MutableInt[] vectorOffsets = new MutableInt[fields.size()];
|
||||
for (int i = 0; i < fields.size(); i++) {
|
||||
vectorOffsets[i] = new MutableInt(0);
|
||||
Schema.Field field = fields.get(i);
|
||||
Schema fieldSchema = field.schema();
|
||||
Object o = currRecord.get(field.name());
|
||||
try {
|
||||
OrcUtils.putToRowBatch(batch.cols[i], vectorOffsets[i], recordsInBatch, fieldSchema, o);
|
||||
} catch (ArrayIndexOutOfBoundsException aioobe) {
|
||||
getLogger().error("Index out of bounds at record {} for column {}, type {}, and object {}",
|
||||
new Object[]{recordsInBatch, i, fieldSchema.getType().getName(), o.toString()},
|
||||
aioobe);
|
||||
throw new IOException(aioobe);
|
||||
}
|
||||
}
|
||||
}
|
||||
recordCount++;
|
||||
recordsInBatch++;
|
||||
|
||||
if (recordsInBatch == batch.getMaxSize()) {
|
||||
// add batch and start a new one
|
||||
batch.size = recordsInBatch;
|
||||
orcWriter.addRowBatch(batch);
|
||||
batch = orcSchema.createRowBatch();
|
||||
recordsInBatch = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// If there are records in the batch, add the batch
|
||||
if (recordsInBatch > 0) {
|
||||
batch.size = recordsInBatch;
|
||||
orcWriter.addRowBatch(batch);
|
||||
}
|
||||
|
||||
hiveAvroSchema.set(avroSchema);
|
||||
totalRecordCount.set(recordCount);
|
||||
} finally {
|
||||
// finished writing this record, close the writer (which will flush to the flow file)
|
||||
orcWriter.close();
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
final String hiveTableName = context.getProperty(HIVE_TABLE_NAME).isSet()
|
||||
? context.getProperty(HIVE_TABLE_NAME).evaluateAttributeExpressions(flowFile).getValue()
|
||||
: OrcUtils.normalizeHiveTableName(hiveAvroSchema.get().getFullName());
|
||||
String hiveDDL = OrcUtils.generateHiveDDL(hiveAvroSchema.get(), hiveTableName);
|
||||
// Add attributes and transfer to success
|
||||
flowFile = session.putAttribute(flowFile, RECORD_COUNT_ATTRIBUTE, Integer.toString(totalRecordCount.get()));
|
||||
flowFile = session.putAttribute(flowFile, HIVE_DDL_ATTRIBUTE, hiveDDL);
|
||||
StringBuilder newFilename = new StringBuilder();
|
||||
int extensionIndex = fileName.lastIndexOf(".");
|
||||
if (extensionIndex != -1) {
|
||||
newFilename.append(fileName.substring(0, extensionIndex));
|
||||
} else {
|
||||
newFilename.append(fileName);
|
||||
}
|
||||
newFilename.append(".orc");
|
||||
flowFile = session.putAttribute(flowFile, CoreAttributes.MIME_TYPE.key(), ORC_MIME_TYPE);
|
||||
flowFile = session.putAttribute(flowFile, CoreAttributes.FILENAME.key(), newFilename.toString());
|
||||
session.transfer(flowFile, REL_SUCCESS);
|
||||
session.getProvenanceReporter().modifyContent(flowFile, "Converted "+totalRecordCount.get()+" records", System.currentTimeMillis() - startTime);
|
||||
} catch (final ProcessException pe) {
|
||||
getLogger().error("Failed to convert {} from Avro to ORC due to {}; transferring to failure", new Object[]{flowFile, pe});
|
||||
session.transfer(flowFile, REL_FAILURE);
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -1,408 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.nifi.util.orc;
|
||||
|
||||
import org.apache.avro.Schema;
|
||||
import org.apache.commons.lang3.StringUtils;
|
||||
import org.apache.commons.lang3.mutable.MutableInt;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.BytesColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.ColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.DoubleColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.ListColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.LongColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.MapColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.UnionColumnVector;
|
||||
import org.apache.orc.TypeDescription;
|
||||
|
||||
import java.nio.ByteBuffer;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
/**
|
||||
* Utility methods for ORC support (conversion from Avro, conversion to Hive types, e.g.
|
||||
*/
|
||||
public class OrcUtils {
|
||||
|
||||
public static void putToRowBatch(ColumnVector col, MutableInt vectorOffset, int rowNumber, Schema fieldSchema, Object o) {
|
||||
Schema.Type fieldType = fieldSchema.getType();
|
||||
|
||||
if (fieldType == null) {
|
||||
throw new IllegalArgumentException("Field type is null");
|
||||
}
|
||||
|
||||
if (o == null) {
|
||||
col.isNull[rowNumber] = true;
|
||||
} else {
|
||||
|
||||
switch (fieldType) {
|
||||
case INT:
|
||||
((LongColumnVector) col).vector[rowNumber] = (int) o;
|
||||
break;
|
||||
case LONG:
|
||||
((LongColumnVector) col).vector[rowNumber] = (long) o;
|
||||
break;
|
||||
case BOOLEAN:
|
||||
((LongColumnVector) col).vector[rowNumber] = ((boolean) o) ? 1 : 0;
|
||||
break;
|
||||
case BYTES:
|
||||
ByteBuffer byteBuffer = ((ByteBuffer) o);
|
||||
int size = byteBuffer.remaining();
|
||||
byte[] buf = new byte[size];
|
||||
byteBuffer.get(buf, 0, size);
|
||||
((BytesColumnVector) col).setVal(rowNumber, buf);
|
||||
break;
|
||||
case DOUBLE:
|
||||
((DoubleColumnVector) col).vector[rowNumber] = (double) o;
|
||||
break;
|
||||
case FLOAT:
|
||||
((DoubleColumnVector) col).vector[rowNumber] = (float) o;
|
||||
break;
|
||||
case STRING:
|
||||
case ENUM:
|
||||
((BytesColumnVector) col).setVal(rowNumber, o.toString().getBytes());
|
||||
break;
|
||||
case UNION:
|
||||
// If the union only has one non-null type in it, it was flattened in the ORC schema
|
||||
if (col instanceof UnionColumnVector) {
|
||||
UnionColumnVector union = ((UnionColumnVector) col);
|
||||
Schema.Type avroType = OrcUtils.getAvroSchemaTypeOfObject(o);
|
||||
// Find the index in the union with the matching Avro type
|
||||
int unionIndex = -1;
|
||||
List<Schema> types = fieldSchema.getTypes();
|
||||
final int numFields = types.size();
|
||||
for (int i = 0; i < numFields && unionIndex == -1; i++) {
|
||||
if (avroType.equals(types.get(i).getType())) {
|
||||
unionIndex = i;
|
||||
}
|
||||
}
|
||||
if (unionIndex == -1) {
|
||||
throw new IllegalArgumentException("Object type " + avroType.getName() + " not found in union '" + fieldSchema.getName() + "'");
|
||||
}
|
||||
|
||||
// Need nested vector offsets
|
||||
MutableInt unionVectorOffset = new MutableInt(0);
|
||||
putToRowBatch(union.fields[unionIndex], unionVectorOffset, rowNumber, fieldSchema.getTypes().get(unionIndex), o);
|
||||
} else {
|
||||
// Find and use the non-null type from the union
|
||||
List<Schema> types = fieldSchema.getTypes();
|
||||
Schema effectiveType = null;
|
||||
for (Schema type : types) {
|
||||
if (!Schema.Type.NULL.equals(type.getType())) {
|
||||
effectiveType = type;
|
||||
break;
|
||||
}
|
||||
}
|
||||
putToRowBatch(col, vectorOffset, rowNumber, effectiveType, o);
|
||||
}
|
||||
break;
|
||||
case ARRAY:
|
||||
Schema arrayType = fieldSchema.getElementType();
|
||||
ListColumnVector array = ((ListColumnVector) col);
|
||||
if (o instanceof int[] || o instanceof long[]) {
|
||||
int length = (o instanceof int[]) ? ((int[]) o).length : ((long[]) o).length;
|
||||
for (int i = 0; i < length; i++) {
|
||||
((LongColumnVector) array.child).vector[vectorOffset.getValue() + i] =
|
||||
(o instanceof int[]) ? ((int[]) o)[i] : ((long[]) o)[i];
|
||||
}
|
||||
array.offsets[rowNumber] = vectorOffset.longValue();
|
||||
array.lengths[rowNumber] = length;
|
||||
vectorOffset.add(length);
|
||||
} else if (o instanceof float[]) {
|
||||
float[] floatArray = (float[]) o;
|
||||
for (int i = 0; i < floatArray.length; i++) {
|
||||
((DoubleColumnVector) array.child).vector[vectorOffset.getValue() + i] = floatArray[i];
|
||||
}
|
||||
array.offsets[rowNumber] = vectorOffset.longValue();
|
||||
array.lengths[rowNumber] = floatArray.length;
|
||||
vectorOffset.add(floatArray.length);
|
||||
} else if (o instanceof double[]) {
|
||||
double[] doubleArray = (double[]) o;
|
||||
for (int i = 0; i < doubleArray.length; i++) {
|
||||
((DoubleColumnVector) array.child).vector[vectorOffset.getValue() + i] = doubleArray[i];
|
||||
}
|
||||
array.offsets[rowNumber] = vectorOffset.longValue();
|
||||
array.lengths[rowNumber] = doubleArray.length;
|
||||
vectorOffset.add(doubleArray.length);
|
||||
} else if (o instanceof String[]) {
|
||||
String[] stringArray = (String[]) o;
|
||||
BytesColumnVector byteCol = ((BytesColumnVector) array.child);
|
||||
for (int i = 0; i < stringArray.length; i++) {
|
||||
if (stringArray[i] == null) {
|
||||
byteCol.isNull[rowNumber] = true;
|
||||
} else {
|
||||
byteCol.setVal(vectorOffset.getValue() + i, stringArray[i].getBytes());
|
||||
}
|
||||
}
|
||||
array.offsets[rowNumber] = vectorOffset.longValue();
|
||||
array.lengths[rowNumber] = stringArray.length;
|
||||
vectorOffset.add(stringArray.length);
|
||||
} else if (o instanceof Map[]) {
|
||||
Map[] mapArray = (Map[]) o;
|
||||
MutableInt mapVectorOffset = new MutableInt(0);
|
||||
for (int i = 0; i < mapArray.length; i++) {
|
||||
if (mapArray[i] == null) {
|
||||
array.child.isNull[rowNumber] = true;
|
||||
} else {
|
||||
putToRowBatch(array.child, mapVectorOffset, vectorOffset.getValue() + i, arrayType, mapArray[i]);
|
||||
}
|
||||
}
|
||||
array.offsets[rowNumber] = vectorOffset.longValue();
|
||||
array.lengths[rowNumber] = mapArray.length;
|
||||
vectorOffset.add(mapArray.length);
|
||||
} else if (o instanceof List) {
|
||||
List listArray = (List) o;
|
||||
MutableInt listVectorOffset = new MutableInt(0);
|
||||
int numElements = listArray.size();
|
||||
for (int i = 0; i < numElements; i++) {
|
||||
if (listArray.get(i) == null) {
|
||||
array.child.isNull[rowNumber] = true;
|
||||
} else {
|
||||
putToRowBatch(array.child, listVectorOffset, vectorOffset.getValue() + i, arrayType, listArray.get(i));
|
||||
}
|
||||
}
|
||||
array.offsets[rowNumber] = vectorOffset.longValue();
|
||||
array.lengths[rowNumber] = numElements;
|
||||
vectorOffset.add(numElements);
|
||||
|
||||
} else {
|
||||
throw new IllegalArgumentException("Object class " + o.getClass().getName() + " not supported as an ORC list/array");
|
||||
}
|
||||
break;
|
||||
case MAP:
|
||||
MapColumnVector map = ((MapColumnVector) col);
|
||||
|
||||
// Avro maps require String keys
|
||||
@SuppressWarnings("unchecked")
|
||||
Map<String, ?> mapObj = (Map<String, ?>) o;
|
||||
int effectiveRowNumber = vectorOffset.getValue();
|
||||
for (Map.Entry<String, ?> entry : mapObj.entrySet()) {
|
||||
putToRowBatch(map.keys, vectorOffset, effectiveRowNumber, Schema.create(Schema.Type.STRING), entry.getKey());
|
||||
putToRowBatch(map.values, vectorOffset, effectiveRowNumber, fieldSchema.getValueType(), entry.getValue());
|
||||
effectiveRowNumber++;
|
||||
}
|
||||
map.offsets[rowNumber] = vectorOffset.longValue();
|
||||
map.lengths[rowNumber] = mapObj.size();
|
||||
vectorOffset.add(mapObj.size());
|
||||
|
||||
break;
|
||||
default:
|
||||
throw new IllegalArgumentException("Field type " + fieldType.getName() + " not recognized");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static String normalizeHiveTableName(String name) {
|
||||
return name.replaceAll("[\\. ]", "_");
|
||||
}
|
||||
|
||||
public static String generateHiveDDL(Schema avroSchema, String tableName) {
|
||||
Schema.Type schemaType = avroSchema.getType();
|
||||
StringBuilder sb = new StringBuilder("CREATE EXTERNAL TABLE IF NOT EXISTS ");
|
||||
sb.append(tableName);
|
||||
sb.append(" (");
|
||||
if (Schema.Type.RECORD.equals(schemaType)) {
|
||||
List<String> hiveColumns = new ArrayList<>();
|
||||
List<Schema.Field> fields = avroSchema.getFields();
|
||||
if (fields != null) {
|
||||
hiveColumns.addAll(
|
||||
fields.stream().map(field -> field.name() + " " + getHiveTypeFromAvroType(field.schema())).collect(Collectors.toList()));
|
||||
}
|
||||
sb.append(StringUtils.join(hiveColumns, ", "));
|
||||
sb.append(") STORED AS ORC");
|
||||
return sb.toString();
|
||||
} else {
|
||||
throw new IllegalArgumentException("Avro schema is of type " + schemaType.getName() + ", not RECORD");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public static void addOrcField(TypeDescription orcSchema, Schema.Field avroField) {
|
||||
Schema fieldSchema = avroField.schema();
|
||||
String fieldName = avroField.name();
|
||||
|
||||
orcSchema.addField(fieldName, getOrcField(fieldSchema));
|
||||
}
|
||||
|
||||
public static TypeDescription getOrcField(Schema fieldSchema) throws IllegalArgumentException {
|
||||
Schema.Type fieldType = fieldSchema.getType();
|
||||
|
||||
switch (fieldType) {
|
||||
case INT:
|
||||
case LONG:
|
||||
case BOOLEAN:
|
||||
case BYTES:
|
||||
case DOUBLE:
|
||||
case FLOAT:
|
||||
case STRING:
|
||||
return getPrimitiveOrcTypeFromPrimitiveAvroType(fieldType);
|
||||
|
||||
case UNION:
|
||||
List<Schema> unionFieldSchemas = fieldSchema.getTypes();
|
||||
TypeDescription unionSchema = TypeDescription.createUnion();
|
||||
if (unionFieldSchemas != null) {
|
||||
// Ignore null types in union
|
||||
List<TypeDescription> orcFields = unionFieldSchemas.stream().filter(
|
||||
unionFieldSchema -> !Schema.Type.NULL.equals(unionFieldSchema.getType())).map(OrcUtils::getOrcField).collect(Collectors.toList());
|
||||
|
||||
|
||||
// Flatten the field if the union only has one non-null element
|
||||
if (orcFields.size() == 1) {
|
||||
return orcFields.get(0);
|
||||
} else {
|
||||
orcFields.forEach(unionSchema::addUnionChild);
|
||||
}
|
||||
}
|
||||
return unionSchema;
|
||||
|
||||
case ARRAY:
|
||||
return TypeDescription.createList(getOrcField(fieldSchema.getElementType()));
|
||||
|
||||
case MAP:
|
||||
return TypeDescription.createMap(TypeDescription.createString(), getOrcField(fieldSchema.getValueType()));
|
||||
|
||||
case RECORD:
|
||||
TypeDescription record = TypeDescription.createStruct();
|
||||
List<Schema.Field> avroFields = fieldSchema.getFields();
|
||||
if (avroFields != null) {
|
||||
avroFields.forEach(avroField -> addOrcField(record, avroField));
|
||||
}
|
||||
return record;
|
||||
|
||||
case ENUM:
|
||||
// An enum value is just a String for ORC/Hive
|
||||
return TypeDescription.createString();
|
||||
|
||||
default:
|
||||
throw new IllegalArgumentException("Did not recognize Avro type " + fieldType.getName());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
public static Schema.Type getAvroSchemaTypeOfObject(Object o) {
|
||||
if (o == null) {
|
||||
return Schema.Type.NULL;
|
||||
} else if (o instanceof Integer) {
|
||||
return Schema.Type.INT;
|
||||
} else if (o instanceof Long) {
|
||||
return Schema.Type.LONG;
|
||||
} else if (o instanceof Boolean) {
|
||||
return Schema.Type.BOOLEAN;
|
||||
} else if (o instanceof byte[]) {
|
||||
return Schema.Type.BYTES;
|
||||
} else if (o instanceof Float) {
|
||||
return Schema.Type.FLOAT;
|
||||
} else if (o instanceof Double) {
|
||||
return Schema.Type.DOUBLE;
|
||||
} else if (o instanceof Enum) {
|
||||
return Schema.Type.ENUM;
|
||||
} else if (o instanceof Object[]) {
|
||||
return Schema.Type.ARRAY;
|
||||
} else if (o instanceof List) {
|
||||
return Schema.Type.ARRAY;
|
||||
} else if (o instanceof Map) {
|
||||
return Schema.Type.MAP;
|
||||
} else {
|
||||
throw new IllegalArgumentException("Object of class " + o.getClass() + " is not a supported Avro Type");
|
||||
}
|
||||
}
|
||||
|
||||
public static TypeDescription getPrimitiveOrcTypeFromPrimitiveAvroType(Schema.Type avroType) throws IllegalArgumentException {
|
||||
if (avroType == null) {
|
||||
throw new IllegalArgumentException("Avro type is null");
|
||||
}
|
||||
switch (avroType) {
|
||||
case INT:
|
||||
return TypeDescription.createInt();
|
||||
case LONG:
|
||||
return TypeDescription.createLong();
|
||||
case BOOLEAN:
|
||||
return TypeDescription.createBoolean();
|
||||
case BYTES:
|
||||
return TypeDescription.createBinary();
|
||||
case DOUBLE:
|
||||
return TypeDescription.createDouble();
|
||||
case FLOAT:
|
||||
return TypeDescription.createFloat();
|
||||
case STRING:
|
||||
return TypeDescription.createString();
|
||||
default:
|
||||
throw new IllegalArgumentException("Avro type " + avroType.getName() + " is not a primitive type");
|
||||
}
|
||||
}
|
||||
|
||||
public static String getHiveTypeFromAvroType(Schema avroSchema) {
|
||||
if (avroSchema == null) {
|
||||
throw new IllegalArgumentException("Avro schema is null");
|
||||
}
|
||||
|
||||
Schema.Type avroType = avroSchema.getType();
|
||||
|
||||
switch (avroType) {
|
||||
case INT:
|
||||
return "INT";
|
||||
case LONG:
|
||||
return "BIGINT";
|
||||
case BOOLEAN:
|
||||
return "BOOLEAN";
|
||||
case BYTES:
|
||||
return "BINARY";
|
||||
case DOUBLE:
|
||||
return "DOUBLE";
|
||||
case FLOAT:
|
||||
return "FLOAT";
|
||||
case STRING:
|
||||
case ENUM:
|
||||
return "STRING";
|
||||
case UNION:
|
||||
List<Schema> unionFieldSchemas = avroSchema.getTypes();
|
||||
if (unionFieldSchemas != null) {
|
||||
List<String> hiveFields = new ArrayList<>();
|
||||
for (Schema unionFieldSchema : unionFieldSchemas) {
|
||||
Schema.Type unionFieldSchemaType = unionFieldSchema.getType();
|
||||
// Ignore null types in union
|
||||
if (!Schema.Type.NULL.equals(unionFieldSchemaType)) {
|
||||
hiveFields.add(getHiveTypeFromAvroType(unionFieldSchema));
|
||||
}
|
||||
}
|
||||
// Flatten the field if the union only has one non-null element
|
||||
return (hiveFields.size() == 1)
|
||||
? hiveFields.get(0)
|
||||
: "UNIONTYPE<" + StringUtils.join(hiveFields, ", ") + ">";
|
||||
|
||||
}
|
||||
break;
|
||||
case MAP:
|
||||
return "MAP<STRING, " + getHiveTypeFromAvroType(avroSchema.getValueType()) + ">";
|
||||
case ARRAY:
|
||||
return "ARRAY<" + getHiveTypeFromAvroType(avroSchema.getElementType()) + ">";
|
||||
case RECORD:
|
||||
List<Schema.Field> recordFields = avroSchema.getFields();
|
||||
if (recordFields != null) {
|
||||
List<String> hiveFields = recordFields.stream().map(
|
||||
recordField -> recordField.name() + ":" + getHiveTypeFromAvroType(recordField.schema())).collect(Collectors.toList());
|
||||
return "STRUCT<" + StringUtils.join(hiveFields, ", ") + ">";
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
throw new IllegalArgumentException("Error converting Avro type " + avroType.getName() + " to Hive type");
|
||||
}
|
||||
}
|
|
@ -14,5 +14,4 @@
|
|||
# limitations under the License.
|
||||
org.apache.nifi.processors.hive.SelectHiveQL
|
||||
org.apache.nifi.processors.hive.PutHiveQL
|
||||
org.apache.nifi.processors.hive.ConvertAvroToORC
|
||||
org.apache.nifi.processors.hive.PutHiveStreaming
|
||||
|
|
|
@ -1,260 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.nifi.processors.hive;
|
||||
|
||||
import org.apache.avro.Schema;
|
||||
import org.apache.avro.file.DataFileWriter;
|
||||
import org.apache.avro.generic.GenericData;
|
||||
import org.apache.avro.generic.GenericDatumWriter;
|
||||
import org.apache.avro.io.DatumWriter;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.FileSystem;
|
||||
import org.apache.hadoop.fs.Path;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.BytesColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.DoubleColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.ListColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.LongColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.MapColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.UnionColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch;
|
||||
import org.apache.nifi.flowfile.attributes.CoreAttributes;
|
||||
import org.apache.nifi.util.MockFlowFile;
|
||||
import org.apache.nifi.util.TestRunner;
|
||||
import org.apache.nifi.util.TestRunners;
|
||||
import org.apache.nifi.util.orc.TestOrcUtils;
|
||||
import org.apache.orc.OrcFile;
|
||||
import org.apache.orc.Reader;
|
||||
import org.apache.orc.RecordReader;
|
||||
import org.junit.Before;
|
||||
import org.junit.Test;
|
||||
|
||||
import java.io.ByteArrayOutputStream;
|
||||
import java.io.FileOutputStream;
|
||||
import java.nio.charset.StandardCharsets;
|
||||
import java.util.Arrays;
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
import java.util.TreeMap;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertTrue;
|
||||
|
||||
|
||||
/**
|
||||
* Unit tests for ConvertAvroToORC processor
|
||||
*/
|
||||
public class TestConvertAvroToORC {
|
||||
|
||||
private ConvertAvroToORC processor;
|
||||
private TestRunner runner;
|
||||
|
||||
@Before
|
||||
public void setUp() throws Exception {
|
||||
processor = new ConvertAvroToORC();
|
||||
runner = TestRunners.newTestRunner(processor);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_Setup() throws Exception {
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_onTrigger_primitive_record() throws Exception {
|
||||
GenericData.Record record = TestOrcUtils.buildPrimitiveAvroRecord(10, 20L, true, 30.0f, 40, StandardCharsets.UTF_8.encode("Hello"), "World");
|
||||
|
||||
DatumWriter<GenericData.Record> writer = new GenericDatumWriter<>(record.getSchema());
|
||||
DataFileWriter<GenericData.Record> fileWriter = new DataFileWriter<>(writer);
|
||||
ByteArrayOutputStream out = new ByteArrayOutputStream();
|
||||
fileWriter.create(record.getSchema(), out);
|
||||
fileWriter.append(record);
|
||||
// Put another record in
|
||||
record = TestOrcUtils.buildPrimitiveAvroRecord(1, 2L, false, 3.0f, 4L, StandardCharsets.UTF_8.encode("I am"), "another record");
|
||||
fileWriter.append(record);
|
||||
// And one more
|
||||
record = TestOrcUtils.buildPrimitiveAvroRecord(100, 200L, true, 300.0f, 400L, StandardCharsets.UTF_8.encode("Me"), "too!");
|
||||
fileWriter.append(record);
|
||||
fileWriter.flush();
|
||||
fileWriter.close();
|
||||
out.close();
|
||||
Map<String,String> attributes = new HashMap<String,String>(){{
|
||||
put(CoreAttributes.FILENAME.key(), "test.avro");
|
||||
}};
|
||||
runner.enqueue(out.toByteArray(), attributes);
|
||||
runner.run();
|
||||
|
||||
runner.assertAllFlowFilesTransferred(ConvertAvroToORC.REL_SUCCESS, 1);
|
||||
|
||||
// Write the flow file out to disk, since the ORC Reader needs a path
|
||||
MockFlowFile resultFlowFile = runner.getFlowFilesForRelationship(ConvertAvroToORC.REL_SUCCESS).get(0);
|
||||
assertEquals("CREATE EXTERNAL TABLE IF NOT EXISTS test_record (int INT, long BIGINT, boolean BOOLEAN, float FLOAT, double DOUBLE, bytes BINARY, string STRING)"
|
||||
+ " STORED AS ORC", resultFlowFile.getAttribute(ConvertAvroToORC.HIVE_DDL_ATTRIBUTE));
|
||||
assertEquals("3", resultFlowFile.getAttribute(ConvertAvroToORC.RECORD_COUNT_ATTRIBUTE));
|
||||
assertEquals("test.orc", resultFlowFile.getAttribute(CoreAttributes.FILENAME.key()));
|
||||
byte[] resultContents = runner.getContentAsByteArray(resultFlowFile);
|
||||
FileOutputStream fos = new FileOutputStream("target/test1.orc");
|
||||
fos.write(resultContents);
|
||||
fos.flush();
|
||||
fos.close();
|
||||
|
||||
Configuration conf = new Configuration();
|
||||
FileSystem fs = FileSystem.getLocal(conf);
|
||||
Reader reader = OrcFile.createReader(new Path("target/test1.orc"), OrcFile.readerOptions(conf).filesystem(fs));
|
||||
RecordReader rows = reader.rows();
|
||||
VectorizedRowBatch batch = reader.getSchema().createRowBatch();
|
||||
assertTrue(rows.nextBatch(batch));
|
||||
assertTrue(batch.cols[0] instanceof LongColumnVector);
|
||||
assertEquals(10, ((LongColumnVector) batch.cols[0]).vector[0]);
|
||||
assertEquals(1, ((LongColumnVector) batch.cols[0]).vector[1]);
|
||||
assertEquals(100, ((LongColumnVector) batch.cols[0]).vector[2]);
|
||||
assertTrue(batch.cols[1] instanceof LongColumnVector);
|
||||
assertEquals(20, ((LongColumnVector) batch.cols[1]).vector[0]);
|
||||
assertEquals(2, ((LongColumnVector) batch.cols[1]).vector[1]);
|
||||
assertEquals(200, ((LongColumnVector) batch.cols[1]).vector[2]);
|
||||
assertTrue(batch.cols[2] instanceof LongColumnVector);
|
||||
assertEquals(1, ((LongColumnVector) batch.cols[2]).vector[0]);
|
||||
assertEquals(0, ((LongColumnVector) batch.cols[2]).vector[1]);
|
||||
assertEquals(1, ((LongColumnVector) batch.cols[2]).vector[2]);
|
||||
assertTrue(batch.cols[3] instanceof DoubleColumnVector);
|
||||
assertEquals(30.0f, ((DoubleColumnVector) batch.cols[3]).vector[0], Double.MIN_NORMAL);
|
||||
assertEquals(3.0f, ((DoubleColumnVector) batch.cols[3]).vector[1], Double.MIN_NORMAL);
|
||||
assertEquals(300.0f, ((DoubleColumnVector) batch.cols[3]).vector[2], Double.MIN_NORMAL);
|
||||
assertTrue(batch.cols[4] instanceof DoubleColumnVector);
|
||||
assertEquals(40.0f, ((DoubleColumnVector) batch.cols[4]).vector[0], Double.MIN_NORMAL);
|
||||
assertEquals(4.0f, ((DoubleColumnVector) batch.cols[4]).vector[1], Double.MIN_NORMAL);
|
||||
assertEquals(400.0f, ((DoubleColumnVector) batch.cols[4]).vector[2], Double.MIN_NORMAL);
|
||||
assertTrue(batch.cols[5] instanceof BytesColumnVector);
|
||||
assertEquals("Hello", ((BytesColumnVector) batch.cols[5]).toString(0));
|
||||
assertEquals("I am", ((BytesColumnVector) batch.cols[5]).toString(1));
|
||||
assertEquals("Me", ((BytesColumnVector) batch.cols[5]).toString(2));
|
||||
assertTrue(batch.cols[6] instanceof BytesColumnVector);
|
||||
assertEquals("World", ((BytesColumnVector) batch.cols[6]).toString(0));
|
||||
assertEquals("another record", ((BytesColumnVector) batch.cols[6]).toString(1));
|
||||
assertEquals("too!", ((BytesColumnVector) batch.cols[6]).toString(2));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_onTrigger_complex_record() throws Exception {
|
||||
|
||||
Map<String, Double> mapData1 = new TreeMap<String, Double>() {{
|
||||
put("key1", 1.0);
|
||||
put("key2", 2.0);
|
||||
}};
|
||||
|
||||
GenericData.Record record = TestOrcUtils.buildComplexAvroRecord(10, mapData1, "DEF", 3.0f, Arrays.asList(10, 20));
|
||||
|
||||
DatumWriter<GenericData.Record> writer = new GenericDatumWriter<>(record.getSchema());
|
||||
DataFileWriter<GenericData.Record> fileWriter = new DataFileWriter<>(writer);
|
||||
ByteArrayOutputStream out = new ByteArrayOutputStream();
|
||||
fileWriter.create(record.getSchema(), out);
|
||||
fileWriter.append(record);
|
||||
|
||||
// Put another record in
|
||||
Map<String, Double> mapData2 = new TreeMap<String, Double>() {{
|
||||
put("key1", 3.0);
|
||||
put("key2", 4.0);
|
||||
}};
|
||||
|
||||
record = TestOrcUtils.buildComplexAvroRecord(null, mapData2, "XYZ", 4L, Arrays.asList(100, 200));
|
||||
fileWriter.append(record);
|
||||
|
||||
fileWriter.flush();
|
||||
fileWriter.close();
|
||||
out.close();
|
||||
|
||||
Map<String,String> attributes = new HashMap<String,String>(){{
|
||||
put(CoreAttributes.FILENAME.key(), "test");
|
||||
}};
|
||||
runner.enqueue(out.toByteArray(), attributes);
|
||||
runner.run();
|
||||
|
||||
runner.assertAllFlowFilesTransferred(ConvertAvroToORC.REL_SUCCESS, 1);
|
||||
|
||||
// Write the flow file out to disk, since the ORC Reader needs a path
|
||||
MockFlowFile resultFlowFile = runner.getFlowFilesForRelationship(ConvertAvroToORC.REL_SUCCESS).get(0);
|
||||
assertEquals("CREATE EXTERNAL TABLE IF NOT EXISTS complex_record " +
|
||||
"(myInt INT, myMap MAP<STRING, DOUBLE>, myEnum STRING, myLongOrFloat UNIONTYPE<BIGINT, FLOAT>, myIntList ARRAY<INT>)"
|
||||
+ " STORED AS ORC", resultFlowFile.getAttribute(ConvertAvroToORC.HIVE_DDL_ATTRIBUTE));
|
||||
assertEquals("2", resultFlowFile.getAttribute(ConvertAvroToORC.RECORD_COUNT_ATTRIBUTE));
|
||||
assertEquals("test.orc", resultFlowFile.getAttribute(CoreAttributes.FILENAME.key()));
|
||||
byte[] resultContents = runner.getContentAsByteArray(resultFlowFile);
|
||||
FileOutputStream fos = new FileOutputStream("target/test1.orc");
|
||||
fos.write(resultContents);
|
||||
fos.flush();
|
||||
fos.close();
|
||||
|
||||
Configuration conf = new Configuration();
|
||||
FileSystem fs = FileSystem.getLocal(conf);
|
||||
Reader reader = OrcFile.createReader(new Path("target/test1.orc"), OrcFile.readerOptions(conf).filesystem(fs));
|
||||
RecordReader rows = reader.rows();
|
||||
VectorizedRowBatch batch = reader.getSchema().createRowBatch();
|
||||
assertTrue(rows.nextBatch(batch));
|
||||
assertTrue(batch.cols[0] instanceof LongColumnVector);
|
||||
assertEquals(10, ((LongColumnVector) batch.cols[0]).vector[0]);
|
||||
assertTrue(batch.cols[1] instanceof MapColumnVector);
|
||||
assertTrue(batch.cols[2] instanceof BytesColumnVector);
|
||||
assertTrue(batch.cols[3] instanceof UnionColumnVector);
|
||||
StringBuilder buffer = new StringBuilder();
|
||||
batch.cols[3].stringifyValue(buffer, 1);
|
||||
assertEquals("{\"tag\": 0, \"value\": 4}", buffer.toString());
|
||||
assertTrue(batch.cols[4] instanceof ListColumnVector);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_onTrigger_multiple_batches() throws Exception {
|
||||
|
||||
Schema recordSchema = TestOrcUtils.buildPrimitiveAvroSchema();
|
||||
DatumWriter<GenericData.Record> writer = new GenericDatumWriter<>(recordSchema);
|
||||
DataFileWriter<GenericData.Record> fileWriter = new DataFileWriter<>(writer);
|
||||
ByteArrayOutputStream out = new ByteArrayOutputStream();
|
||||
fileWriter.create(recordSchema, out);
|
||||
|
||||
GenericData.Record record;
|
||||
for (int i = 1;i<=2000;i++) {
|
||||
record = TestOrcUtils.buildPrimitiveAvroRecord(i, 2L * i, true, 30.0f * i, 40L * i, StandardCharsets.UTF_8.encode("Hello"), "World");
|
||||
|
||||
|
||||
fileWriter.append(record);
|
||||
}
|
||||
|
||||
fileWriter.flush();
|
||||
fileWriter.close();
|
||||
out.close();
|
||||
runner.enqueue(out.toByteArray());
|
||||
runner.run();
|
||||
|
||||
runner.assertAllFlowFilesTransferred(ConvertAvroToORC.REL_SUCCESS, 1);
|
||||
|
||||
// Write the flow file out to disk, since the ORC Reader needs a path
|
||||
MockFlowFile resultFlowFile = runner.getFlowFilesForRelationship(ConvertAvroToORC.REL_SUCCESS).get(0);
|
||||
assertEquals("2000", resultFlowFile.getAttribute(ConvertAvroToORC.RECORD_COUNT_ATTRIBUTE));
|
||||
byte[] resultContents = runner.getContentAsByteArray(resultFlowFile);
|
||||
FileOutputStream fos = new FileOutputStream("target/test1.orc");
|
||||
fos.write(resultContents);
|
||||
fos.flush();
|
||||
fos.close();
|
||||
|
||||
Configuration conf = new Configuration();
|
||||
FileSystem fs = FileSystem.getLocal(conf);
|
||||
Reader reader = OrcFile.createReader(new Path("target/test1.orc"), OrcFile.readerOptions(conf).filesystem(fs));
|
||||
RecordReader rows = reader.rows();
|
||||
VectorizedRowBatch batch = reader.getSchema().createRowBatch();
|
||||
assertTrue(rows.nextBatch(batch));
|
||||
// At least 2 batches were created
|
||||
assertTrue(rows.nextBatch(batch));
|
||||
}
|
||||
}
|
|
@ -1,555 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.nifi.util.orc;
|
||||
|
||||
|
||||
import org.apache.avro.Schema;
|
||||
import org.apache.avro.SchemaBuilder;
|
||||
import org.apache.avro.generic.GenericData;
|
||||
import org.apache.commons.lang3.mutable.MutableInt;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.BytesColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.DoubleColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.ListColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.LongColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.MapColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.UnionColumnVector;
|
||||
import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch;
|
||||
import org.apache.orc.TypeDescription;
|
||||
import org.junit.Test;
|
||||
|
||||
import java.nio.ByteBuffer;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.TreeMap;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertTrue;
|
||||
|
||||
/**
|
||||
* Unit tests for the OrcUtils helper class
|
||||
*/
|
||||
public class TestOrcUtils {
|
||||
|
||||
@Test
|
||||
public void test_getOrcField_primitive() throws Exception {
|
||||
// Expected ORC types
|
||||
TypeDescription[] expectedTypes = {
|
||||
TypeDescription.createInt(),
|
||||
TypeDescription.createLong(),
|
||||
TypeDescription.createBoolean(),
|
||||
TypeDescription.createFloat(),
|
||||
TypeDescription.createDouble(),
|
||||
TypeDescription.createBinary(),
|
||||
TypeDescription.createString(),
|
||||
};
|
||||
|
||||
// Build a fake Avro record with all types
|
||||
Schema testSchema = buildPrimitiveAvroSchema();
|
||||
List<Schema.Field> fields = testSchema.getFields();
|
||||
for (int i = 0; i < fields.size(); i++) {
|
||||
assertEquals(expectedTypes[i], OrcUtils.getOrcField(fields.get(i).schema()));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_getOrcField_union_optional_type() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("union").type().unionOf().nullBuilder().endNull().and().booleanType().endUnion().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("union").schema());
|
||||
assertEquals(TypeDescription.createBoolean(), orcType);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_getOrcField_union() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("union").type().unionOf().intType().and().booleanType().endUnion().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("union").schema());
|
||||
assertEquals(
|
||||
TypeDescription.createUnion()
|
||||
.addUnionChild(TypeDescription.createInt())
|
||||
.addUnionChild(TypeDescription.createBoolean()),
|
||||
orcType);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_getOrcField_map() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("map").type().map().values().doubleType().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("map").schema());
|
||||
assertEquals(
|
||||
TypeDescription.createMap(TypeDescription.createString(), TypeDescription.createDouble()),
|
||||
orcType);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_getOrcField_nested_map() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("map").type().map().values().map().values().doubleType().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("map").schema());
|
||||
assertEquals(
|
||||
TypeDescription.createMap(TypeDescription.createString(),
|
||||
TypeDescription.createMap(TypeDescription.createString(), TypeDescription.createDouble())),
|
||||
orcType);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_getOrcField_array() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("array").type().array().items().longType().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("array").schema());
|
||||
assertEquals(
|
||||
TypeDescription.createList(TypeDescription.createLong()),
|
||||
orcType);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_getOrcField_complex_array() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("array").type().array().items().map().values().floatType().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("array").schema());
|
||||
assertEquals(
|
||||
TypeDescription.createList(TypeDescription.createMap(TypeDescription.createString(), TypeDescription.createFloat())),
|
||||
orcType);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_getOrcField_record() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("int").type().intType().noDefault();
|
||||
builder.name("long").type().longType().longDefault(1L);
|
||||
builder.name("array").type().array().items().stringType().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
TypeDescription orcType = OrcUtils.getOrcField(testSchema);
|
||||
assertEquals(
|
||||
TypeDescription.createStruct()
|
||||
.addField("int", TypeDescription.createInt())
|
||||
.addField("long", TypeDescription.createLong())
|
||||
.addField("array", TypeDescription.createList(TypeDescription.createString())),
|
||||
orcType);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_getOrcField_enum() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("enumField").type().enumeration("enum").symbols("a", "b", "c").enumDefault("a");
|
||||
Schema testSchema = builder.endRecord();
|
||||
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("enumField").schema());
|
||||
assertEquals(TypeDescription.createString(), orcType);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_getPrimitiveOrcTypeFromPrimitiveAvroType() throws Exception {
|
||||
// Expected ORC types
|
||||
TypeDescription[] expectedTypes = {
|
||||
TypeDescription.createInt(),
|
||||
TypeDescription.createLong(),
|
||||
TypeDescription.createBoolean(),
|
||||
TypeDescription.createFloat(),
|
||||
TypeDescription.createDouble(),
|
||||
TypeDescription.createBinary(),
|
||||
TypeDescription.createString(),
|
||||
};
|
||||
|
||||
Schema testSchema = buildPrimitiveAvroSchema();
|
||||
List<Schema.Field> fields = testSchema.getFields();
|
||||
for (int i = 0; i < fields.size(); i++) {
|
||||
assertEquals(expectedTypes[i], OrcUtils.getPrimitiveOrcTypeFromPrimitiveAvroType(fields.get(i).schema().getType()));
|
||||
}
|
||||
}
|
||||
|
||||
@Test(expected = IllegalArgumentException.class)
|
||||
public void test_getPrimitiveOrcTypeFromPrimitiveAvroType_badType() throws Exception {
|
||||
Schema.Type nonPrimitiveType = Schema.Type.ARRAY;
|
||||
OrcUtils.getPrimitiveOrcTypeFromPrimitiveAvroType(nonPrimitiveType);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_putRowToBatch() {
|
||||
TypeDescription orcSchema = buildPrimitiveOrcSchema();
|
||||
VectorizedRowBatch batch = orcSchema.createRowBatch();
|
||||
Schema avroSchema = buildPrimitiveAvroSchema();
|
||||
List<Schema.Field> fields = avroSchema.getFields();
|
||||
GenericData.Record record = buildPrimitiveAvroRecord(1, 2L, false, 1.0f, 3.0, ByteBuffer.wrap("Hello".getBytes()), "World");
|
||||
for (int i = 0; i < fields.size(); i++) {
|
||||
OrcUtils.putToRowBatch(batch.cols[i], new MutableInt(0), 0, fields.get(i).schema(), record.get(i));
|
||||
}
|
||||
|
||||
assertEquals(1, ((LongColumnVector) batch.cols[0]).vector[0]);
|
||||
assertEquals(2, ((LongColumnVector) batch.cols[1]).vector[0]);
|
||||
assertEquals(0, ((LongColumnVector) batch.cols[2]).vector[0]);
|
||||
assertEquals(1.0, ((DoubleColumnVector) batch.cols[3]).vector[0], Double.MIN_NORMAL);
|
||||
assertEquals(3.0, ((DoubleColumnVector) batch.cols[4]).vector[0], Double.MIN_NORMAL);
|
||||
assertEquals("Hello", ((BytesColumnVector) batch.cols[5]).toString(0));
|
||||
assertEquals("World", ((BytesColumnVector) batch.cols[6]).toString(0));
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_putRowToBatch_union() {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("union").type().unionOf().intType().and().floatType().endUnion().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
|
||||
GenericData.Record row = new GenericData.Record(testSchema);
|
||||
row.put("union", 2);
|
||||
|
||||
TypeDescription orcSchema = TypeDescription.createUnion()
|
||||
.addUnionChild(TypeDescription.createInt())
|
||||
.addUnionChild(TypeDescription.createFloat());
|
||||
|
||||
VectorizedRowBatch batch = orcSchema.createRowBatch();
|
||||
batch.ensureSize(2);
|
||||
OrcUtils.putToRowBatch(batch.cols[0], new MutableInt(0), 0, testSchema.getField("union").schema(), row.get("union"));
|
||||
|
||||
UnionColumnVector union = ((UnionColumnVector) batch.cols[0]);
|
||||
// verify the value is in the union field of type 'int'
|
||||
assertEquals(2, ((LongColumnVector) union.fields[0]).vector[0]);
|
||||
assertEquals(0.0, ((DoubleColumnVector) union.fields[1]).vector[0], Double.MIN_NORMAL);
|
||||
|
||||
row.put("union", 2.0f);
|
||||
OrcUtils.putToRowBatch(batch.cols[0], new MutableInt(0), 1, testSchema.getField("union").schema(), row.get("union"));
|
||||
|
||||
union = ((UnionColumnVector) batch.cols[0]);
|
||||
// verify the value is in the union field of type 'double'
|
||||
assertEquals(0, ((LongColumnVector) union.fields[0]).vector[1]);
|
||||
assertEquals(2.0, ((DoubleColumnVector) union.fields[1]).vector[1], Double.MIN_NORMAL);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_putRowToBatch_optional_union() {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("union").type().unionOf().nullType().and().floatType().endUnion().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
|
||||
GenericData.Record row = new GenericData.Record(testSchema);
|
||||
row.put("union", 2.0f);
|
||||
|
||||
TypeDescription orcSchema = TypeDescription.createFloat();
|
||||
|
||||
VectorizedRowBatch batch = orcSchema.createRowBatch();
|
||||
batch.ensureSize(2);
|
||||
OrcUtils.putToRowBatch(batch.cols[0], new MutableInt(0), 0, testSchema.getField("union").schema(), row.get("union"));
|
||||
|
||||
assertTrue(batch.cols[0] instanceof DoubleColumnVector);
|
||||
|
||||
DoubleColumnVector union = ((DoubleColumnVector) batch.cols[0]);
|
||||
// verify the value is in the union field of type 'int'
|
||||
assertEquals(2.0, union.vector[0], Double.MIN_NORMAL);
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_putRowToBatch_array_ints() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("array").type().array().items().intType().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
|
||||
GenericData.Record row = new GenericData.Record(testSchema);
|
||||
int[] data1 = {1, 2, 3, 4, 5};
|
||||
row.put("array", data1);
|
||||
|
||||
TypeDescription orcSchema = OrcUtils.getOrcField(testSchema.getField("array").schema());
|
||||
VectorizedRowBatch batch = orcSchema.createRowBatch();
|
||||
batch.ensureSize(2);
|
||||
MutableInt vectorOffset = new MutableInt(0);
|
||||
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 0, testSchema.getField("array").schema(), row.get("array"));
|
||||
|
||||
int[] data2 = {10, 20, 30, 40};
|
||||
row.put("array", data2);
|
||||
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 1, testSchema.getField("array").schema(), row.get("array"));
|
||||
|
||||
ListColumnVector array = ((ListColumnVector) batch.cols[0]);
|
||||
LongColumnVector dataColumn = ((LongColumnVector) array.child);
|
||||
// Check the first row, entries 0..4 should have values 1..5
|
||||
for (int i = 0; i < 5; i++) {
|
||||
assertEquals(i + 1, dataColumn.vector[i]);
|
||||
}
|
||||
// Check the second row, entries 5..8 should have values 10..40 (by tens)
|
||||
for (int i = 0; i < 4; i++) {
|
||||
assertEquals((i + 1) * 10, dataColumn.vector[(int) array.offsets[1] + i]);
|
||||
}
|
||||
assertEquals(0, dataColumn.vector[9]);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_putRowToBatch_array_floats() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("array").type().array().items().floatType().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
|
||||
GenericData.Record row = new GenericData.Record(testSchema);
|
||||
float[] data1 = {1.0f, 2.0f, 3.0f};
|
||||
row.put("array", data1);
|
||||
|
||||
TypeDescription orcSchema = OrcUtils.getOrcField(testSchema.getField("array").schema());
|
||||
VectorizedRowBatch batch = orcSchema.createRowBatch();
|
||||
batch.ensureSize(2);
|
||||
MutableInt vectorOffset = new MutableInt(0);
|
||||
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 0, testSchema.getField("array").schema(), row.get("array"));
|
||||
|
||||
float[] data2 = {40.0f, 41.0f, 42.0f, 43.0f};
|
||||
row.put("array", data2);
|
||||
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 1, testSchema.getField("array").schema(), row.get("array"));
|
||||
|
||||
ListColumnVector array = ((ListColumnVector) batch.cols[0]);
|
||||
DoubleColumnVector dataColumn = ((DoubleColumnVector) array.child);
|
||||
// Check the first row, entries 0..4 should have values 1..5
|
||||
for (int i = 0; i < 3; i++) {
|
||||
assertEquals(i + 1.0f, dataColumn.vector[i], Float.MIN_NORMAL);
|
||||
}
|
||||
// Check the second row, entries 5..8 should have values 10..40 (by tens)
|
||||
for (int i = 0; i < 4; i++) {
|
||||
assertEquals((i + 40.0f), dataColumn.vector[(int) array.offsets[1] + i], Float.MIN_NORMAL);
|
||||
}
|
||||
assertEquals(0.0f, dataColumn.vector[9], Float.MIN_NORMAL);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_putRowToBatch_list_doubles() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("array").type().array().items().doubleType().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
|
||||
GenericData.Record row = new GenericData.Record(testSchema);
|
||||
List<Double> data1 = Arrays.asList(1.0, 2.0, 3.0);
|
||||
row.put("array", data1);
|
||||
|
||||
TypeDescription orcSchema = OrcUtils.getOrcField(testSchema.getField("array").schema());
|
||||
VectorizedRowBatch batch = orcSchema.createRowBatch();
|
||||
batch.ensureSize(2);
|
||||
MutableInt vectorOffset = new MutableInt(0);
|
||||
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 0, testSchema.getField("array").schema(), row.get("array"));
|
||||
|
||||
List<Double> data2 = Arrays.asList(40.0, 41.0, 42.0, 43.0);
|
||||
row.put("array", data2);
|
||||
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 1, testSchema.getField("array").schema(), row.get("array"));
|
||||
|
||||
ListColumnVector array = ((ListColumnVector) batch.cols[0]);
|
||||
DoubleColumnVector dataColumn = ((DoubleColumnVector) array.child);
|
||||
// Check the first row, entries 0..4 should have values 1..5
|
||||
for (int i = 0; i < 3; i++) {
|
||||
assertEquals(i + 1.0f, dataColumn.vector[i], Float.MIN_NORMAL);
|
||||
}
|
||||
// Check the second row, entries 5..8 should have values 10..40 (by tens)
|
||||
for (int i = 0; i < 4; i++) {
|
||||
assertEquals((i + 40.0), dataColumn.vector[(int) array.offsets[1] + i], Float.MIN_NORMAL);
|
||||
}
|
||||
assertEquals(0.0, dataColumn.vector[9], Float.MIN_NORMAL);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_putRowToBatch_array_of_maps() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("array").type().array().items().map().values().floatType().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
|
||||
Map<String, Float> map1 = new TreeMap<String, Float>() {{
|
||||
put("key10", 10.0f);
|
||||
put("key20", 20.0f);
|
||||
}};
|
||||
|
||||
Map<String, Float> map2 = new TreeMap<String, Float>() {{
|
||||
put("key101", 101.0f);
|
||||
put("key202", 202.0f);
|
||||
}};
|
||||
|
||||
Map[] maps = new Map[]{map1, map2, null};
|
||||
GenericData.Record row = new GenericData.Record(testSchema);
|
||||
row.put("array", maps);
|
||||
|
||||
TypeDescription orcSchema = OrcUtils.getOrcField(testSchema.getField("array").schema());
|
||||
VectorizedRowBatch batch = orcSchema.createRowBatch();
|
||||
OrcUtils.putToRowBatch(batch.cols[0], new MutableInt(0), 0, testSchema.getField("array").schema(), row.get("array"));
|
||||
|
||||
ListColumnVector array = ((ListColumnVector) batch.cols[0]);
|
||||
MapColumnVector map = ((MapColumnVector) array.child);
|
||||
StringBuilder buffer = new StringBuilder();
|
||||
map.stringifyValue(buffer, 0);
|
||||
assertEquals("[{\"key\": \"key10\", \"value\": 10.0}, {\"key\": \"key20\", \"value\": 20.0}]", buffer.toString());
|
||||
buffer = new StringBuilder();
|
||||
map.stringifyValue(buffer, 1);
|
||||
assertEquals("[{\"key\": \"key101\", \"value\": 101.0}, {\"key\": \"key202\", \"value\": 202.0}]", buffer.toString());
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_putRowToBatch_primitive_map() throws Exception {
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
|
||||
builder.name("map").type().map().values().longType().noDefault();
|
||||
Schema testSchema = builder.endRecord();
|
||||
|
||||
Map<String, Long> mapData1 = new TreeMap<String, Long>() {{
|
||||
put("key10", 100L);
|
||||
put("key20", 200L);
|
||||
}};
|
||||
|
||||
GenericData.Record row = new GenericData.Record(testSchema);
|
||||
row.put("map", mapData1);
|
||||
|
||||
TypeDescription orcSchema = OrcUtils.getOrcField(testSchema.getField("map").schema());
|
||||
VectorizedRowBatch batch = orcSchema.createRowBatch();
|
||||
batch.ensureSize(2);
|
||||
MutableInt vectorOffset = new MutableInt(0);
|
||||
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 0, testSchema.getField("map").schema(), row.get("map"));
|
||||
|
||||
Map<String, Long> mapData2 = new TreeMap<String, Long>() {{
|
||||
put("key1000", 1000L);
|
||||
put("key2000", 2000L);
|
||||
}};
|
||||
|
||||
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 1, testSchema.getField("map").schema(), mapData2);
|
||||
|
||||
MapColumnVector map = ((MapColumnVector) batch.cols[0]);
|
||||
StringBuilder buffer = new StringBuilder();
|
||||
map.stringifyValue(buffer, 0);
|
||||
assertEquals("[{\"key\": \"key10\", \"value\": 100}, {\"key\": \"key20\", \"value\": 200}]", buffer.toString());
|
||||
buffer = new StringBuilder();
|
||||
map.stringifyValue(buffer, 1);
|
||||
assertEquals("[{\"key\": \"key1000\", \"value\": 1000}, {\"key\": \"key2000\", \"value\": 2000}]", buffer.toString());
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_getHiveTypeFromAvroType_primitive() throws Exception {
|
||||
// Expected ORC types
|
||||
String[] expectedTypes = {
|
||||
"INT",
|
||||
"BIGINT",
|
||||
"BOOLEAN",
|
||||
"FLOAT",
|
||||
"DOUBLE",
|
||||
"BINARY",
|
||||
"STRING",
|
||||
};
|
||||
|
||||
Schema testSchema = buildPrimitiveAvroSchema();
|
||||
List<Schema.Field> fields = testSchema.getFields();
|
||||
for (int i = 0; i < fields.size(); i++) {
|
||||
assertEquals(expectedTypes[i], OrcUtils.getHiveTypeFromAvroType(fields.get(i).schema()));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_getHiveTypeFromAvroType_complex() throws Exception {
|
||||
// Expected ORC types
|
||||
String[] expectedTypes = {
|
||||
"INT",
|
||||
"MAP<STRING, DOUBLE>",
|
||||
"STRING",
|
||||
"UNIONTYPE<BIGINT, FLOAT>",
|
||||
"ARRAY<INT>"
|
||||
};
|
||||
|
||||
Schema testSchema = buildComplexAvroSchema();
|
||||
List<Schema.Field> fields = testSchema.getFields();
|
||||
for (int i = 0; i < fields.size(); i++) {
|
||||
assertEquals(expectedTypes[i], OrcUtils.getHiveTypeFromAvroType(fields.get(i).schema()));
|
||||
}
|
||||
|
||||
assertEquals("STRUCT<myInt:INT, myMap:MAP<STRING, DOUBLE>, myEnum:STRING, myLongOrFloat:UNIONTYPE<BIGINT, FLOAT>, myIntList:ARRAY<INT>>",
|
||||
OrcUtils.getHiveTypeFromAvroType(testSchema));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_generateHiveDDL_primitive() throws Exception {
|
||||
Schema avroSchema = buildPrimitiveAvroSchema();
|
||||
String ddl = OrcUtils.generateHiveDDL(avroSchema, "myHiveTable");
|
||||
assertEquals("CREATE EXTERNAL TABLE IF NOT EXISTS myHiveTable (int INT, long BIGINT, boolean BOOLEAN, float FLOAT, double DOUBLE, bytes BINARY, string STRING)"
|
||||
+ " STORED AS ORC", ddl);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test_generateHiveDDL_complex() throws Exception {
|
||||
Schema avroSchema = buildComplexAvroSchema();
|
||||
String ddl = OrcUtils.generateHiveDDL(avroSchema, "myHiveTable");
|
||||
assertEquals("CREATE EXTERNAL TABLE IF NOT EXISTS myHiveTable "
|
||||
+ "(myInt INT, myMap MAP<STRING, DOUBLE>, myEnum STRING, myLongOrFloat UNIONTYPE<BIGINT, FLOAT>, myIntList ARRAY<INT>)"
|
||||
+ " STORED AS ORC", ddl);
|
||||
}
|
||||
|
||||
|
||||
//////////////////
|
||||
// Helper methods
|
||||
//////////////////
|
||||
|
||||
public static Schema buildPrimitiveAvroSchema() {
|
||||
// Build a fake Avro record with all primitive types
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("test.record").namespace("any.data").fields();
|
||||
builder.name("int").type().intType().noDefault();
|
||||
builder.name("long").type().longType().longDefault(1L);
|
||||
builder.name("boolean").type().booleanType().booleanDefault(true);
|
||||
builder.name("float").type().floatType().floatDefault(0.0f);
|
||||
builder.name("double").type().doubleType().doubleDefault(0.0);
|
||||
builder.name("bytes").type().bytesType().noDefault();
|
||||
builder.name("string").type().stringType().stringDefault("default");
|
||||
return builder.endRecord();
|
||||
}
|
||||
|
||||
public static GenericData.Record buildPrimitiveAvroRecord(int i, long l, boolean b, float f, double d, ByteBuffer bytes, String string) {
|
||||
Schema schema = buildPrimitiveAvroSchema();
|
||||
GenericData.Record row = new GenericData.Record(schema);
|
||||
row.put("int", i);
|
||||
row.put("long", l);
|
||||
row.put("boolean", b);
|
||||
row.put("float", f);
|
||||
row.put("double", d);
|
||||
row.put("bytes", bytes);
|
||||
row.put("string", string);
|
||||
return row;
|
||||
}
|
||||
|
||||
public static TypeDescription buildPrimitiveOrcSchema() {
|
||||
return TypeDescription.createStruct()
|
||||
.addField("int", TypeDescription.createInt())
|
||||
.addField("long", TypeDescription.createLong())
|
||||
.addField("boolean", TypeDescription.createBoolean())
|
||||
.addField("float", TypeDescription.createFloat())
|
||||
.addField("double", TypeDescription.createDouble())
|
||||
.addField("bytes", TypeDescription.createBinary())
|
||||
.addField("string", TypeDescription.createString());
|
||||
}
|
||||
|
||||
public static Schema buildComplexAvroSchema() {
|
||||
// Build a fake Avro record with nested types
|
||||
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("complex.record").namespace("any.data").fields();
|
||||
builder.name("myInt").type().unionOf().nullType().and().intType().endUnion().nullDefault();
|
||||
builder.name("myMap").type().map().values().doubleType().noDefault();
|
||||
builder.name("myEnum").type().enumeration("myEnum").symbols("ABC", "DEF", "XYZ").enumDefault("ABC");
|
||||
builder.name("myLongOrFloat").type().unionOf().longType().and().floatType().endUnion().noDefault();
|
||||
builder.name("myIntList").type().array().items().intType().noDefault();
|
||||
return builder.endRecord();
|
||||
}
|
||||
|
||||
public static GenericData.Record buildComplexAvroRecord(Integer i, Map<String, Double> m, String e, Object unionVal, List<Integer> intArray) {
|
||||
Schema schema = buildComplexAvroSchema();
|
||||
GenericData.Record row = new GenericData.Record(schema);
|
||||
row.put("myInt", i);
|
||||
row.put("myMap", m);
|
||||
row.put("myEnum", e);
|
||||
row.put("myLongOrFloat", unionVal);
|
||||
row.put("myIntList", intArray);
|
||||
return row;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue