NIFI-1868: Downgrade to Hive 1.2.1 and remove ConvertAvroToORC

Signed-off-by: Bryan Bende <bbende@apache.org>
This commit is contained in:
Matt Burgess 2016-07-22 11:14:16 -04:00 committed by Bryan Bende
parent c2019b9339
commit 59659232c7
No known key found for this signature in database
GPG Key ID: A0DDA9ED50711C39
7 changed files with 5 additions and 4485 deletions

View File

@ -26,8 +26,7 @@
<packaging>jar</packaging>
<properties>
<hive.version>2.0.1</hive.version>
<orc.version>1.1.2</orc.version>
<hive.version>1.2.1</hive.version>
</properties>
@ -139,11 +138,6 @@
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.orc</groupId>
<artifactId>orc-core</artifactId>
<version>${orc.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hive.hcatalog</groupId>
<artifactId>hive-hcatalog-streaming</artifactId>
@ -168,6 +162,10 @@
<artifactId>hive-hcatalog-core</artifactId>
<version>${hive.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>

View File

@ -1,310 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.nifi.processors.hive;
import org.apache.avro.Schema;
import org.apache.avro.file.DataFileStream;
import org.apache.avro.generic.GenericDatumReader;
import org.apache.avro.generic.GenericRecord;
import org.apache.commons.lang3.mutable.MutableInt;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch;
import org.apache.nifi.annotation.behavior.InputRequirement;
import org.apache.nifi.annotation.behavior.SideEffectFree;
import org.apache.nifi.annotation.behavior.SupportsBatching;
import org.apache.nifi.annotation.behavior.WritesAttribute;
import org.apache.nifi.annotation.behavior.WritesAttributes;
import org.apache.nifi.annotation.documentation.CapabilityDescription;
import org.apache.nifi.annotation.documentation.Tags;
import org.apache.nifi.annotation.lifecycle.OnScheduled;
import org.apache.nifi.components.PropertyDescriptor;
import org.apache.nifi.flowfile.FlowFile;
import org.apache.nifi.flowfile.attributes.CoreAttributes;
import org.apache.nifi.processor.AbstractProcessor;
import org.apache.nifi.processor.DataUnit;
import org.apache.nifi.processor.ProcessContext;
import org.apache.nifi.processor.ProcessSession;
import org.apache.nifi.processor.Relationship;
import org.apache.nifi.processor.exception.ProcessException;
import org.apache.nifi.processor.io.StreamCallback;
import org.apache.nifi.processor.util.StandardValidators;
import org.apache.nifi.util.hive.HiveJdbcCommon;
import org.apache.nifi.util.hive.HiveUtils;
import org.apache.nifi.util.orc.OrcFlowFileWriter;
import org.apache.nifi.util.orc.OrcUtils;
import org.apache.orc.CompressionKind;
import org.apache.orc.OrcFile;
import org.apache.orc.TypeDescription;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReference;
/**
* The ConvertAvroToORC processor takes an Avro-formatted flow file as input and converts it into ORC format.
*/
@SideEffectFree
@SupportsBatching
@Tags({"avro", "orc", "hive", "convert"})
@InputRequirement(InputRequirement.Requirement.INPUT_REQUIRED)
@CapabilityDescription("Converts an Avro record into ORC file format. This processor provides a direct mapping of an Avro record to an ORC record, such "
+ "that the resulting ORC file will have the same hierarchical structure as the Avro document. If an incoming FlowFile contains a stream of "
+ "multiple Avro records, the resultant FlowFile will contain a ORC file containing all of the Avro records. If an incoming FlowFile does "
+ "not contain any records, an empty ORC file is the output.")
@WritesAttributes({
@WritesAttribute(attribute = "mime.type", description = "Sets the mime type to application/octet-stream"),
@WritesAttribute(attribute = "filename", description = "Sets the filename to the existing filename with the extension replaced by / added to by .orc"),
@WritesAttribute(attribute = "record.count", description = "Sets the number of records in the ORC file."),
@WritesAttribute(attribute = "hive.ddl", description = "Creates a partial Hive DDL statement for creating a table in Hive from this ORC file. "
+ "This can be used in ReplaceText for setting the content to the DDL. To make it valid DDL, add \"LOCATION '<path_to_orc_file_in_hdfs>'\", where "
+ "the path is the directory that contains this ORC file on HDFS. For example, ConvertAvroToORC can send flow files to a PutHDFS processor to send the file to "
+ "HDFS, then to a ReplaceText to set the content to this DDL (plus the LOCATION clause as described), then to PutHiveQL processor to create the table "
+ "if it doesn't exist.")
})
public class ConvertAvroToORC extends AbstractProcessor {
// Attributes
public static final String ORC_MIME_TYPE = "application/octet-stream";
public static final String HIVE_DDL_ATTRIBUTE = "hive.ddl";
public static final String RECORD_COUNT_ATTRIBUTE = "record.count";
// Properties
public static final PropertyDescriptor ORC_CONFIGURATION_RESOURCES = new PropertyDescriptor.Builder()
.name("orc-config-resources")
.displayName("ORC Configuration Resources")
.description("A file or comma separated list of files which contains the ORC configuration (hive-site.xml, e.g.). Without this, Hadoop "
+ "will search the classpath for a 'hive-site.xml' file or will revert to a default configuration. Please see the ORC documentation for more details.")
.required(false).addValidator(HiveUtils.createMultipleFilesExistValidator()).build();
public static final PropertyDescriptor STRIPE_SIZE = new PropertyDescriptor.Builder()
.name("orc-stripe-size")
.displayName("Stripe Size")
.description("The size of the memory buffer (in bytes) for writing stripes to an ORC file")
.required(true)
.addValidator(StandardValidators.DATA_SIZE_VALIDATOR)
.defaultValue("100 KB")
.build();
public static final PropertyDescriptor BUFFER_SIZE = new PropertyDescriptor.Builder()
.name("orc-buffer-size")
.displayName("Buffer Size")
.description("The maximum size of the memory buffers (in bytes) used for compressing and storing a stripe in memory. This is a hint to the ORC writer, "
+ "which may choose to use a smaller buffer size based on stripe size and number of columns for efficient stripe writing and memory utilization.")
.required(true)
.addValidator(StandardValidators.DATA_SIZE_VALIDATOR)
.defaultValue("10 KB")
.build();
public static final PropertyDescriptor COMPRESSION_TYPE = new PropertyDescriptor.Builder()
.name("orc-compression-type")
.displayName("Compression Type")
.required(true)
.allowableValues("NONE", "ZLIB", "SNAPPY", "LZO")
.defaultValue("NONE")
.build();
public static final PropertyDescriptor HIVE_TABLE_NAME = new PropertyDescriptor.Builder()
.name("orc-hive-table-name")
.displayName("Hive Table Name")
.description("An optional table name to insert into the hive.ddl attribute. The generated DDL can be used by "
+ "a PutHiveQL processor (presumably after a PutHDFS processor) to create a table backed by the converted ORC file. "
+ "If this property is not provided, the full name (including namespace) of the incoming Avro record will be normalized "
+ "and used as the table name.")
.required(false)
.expressionLanguageSupported(true)
.addValidator(StandardValidators.NON_BLANK_VALIDATOR)
.build();
// Relationships
static final Relationship REL_SUCCESS = new Relationship.Builder()
.name("success")
.description("A FlowFile is routed to this relationship after it has been converted to ORC format.")
.build();
static final Relationship REL_FAILURE = new Relationship.Builder()
.name("failure")
.description("A FlowFile is routed to this relationship if it cannot be parsed as Avro or cannot be converted to ORC for any reason")
.build();
private final static List<PropertyDescriptor> propertyDescriptors;
private final static Set<Relationship> relationships;
private volatile Configuration orcConfig;
/*
* Will ensure that the list of property descriptors is built only once.
* Will also create a Set of relationships
*/
static {
List<PropertyDescriptor> _propertyDescriptors = new ArrayList<>();
_propertyDescriptors.add(ORC_CONFIGURATION_RESOURCES);
_propertyDescriptors.add(STRIPE_SIZE);
_propertyDescriptors.add(BUFFER_SIZE);
_propertyDescriptors.add(COMPRESSION_TYPE);
_propertyDescriptors.add(HIVE_TABLE_NAME);
propertyDescriptors = Collections.unmodifiableList(_propertyDescriptors);
Set<Relationship> _relationships = new HashSet<>();
_relationships.add(REL_SUCCESS);
_relationships.add(REL_FAILURE);
relationships = Collections.unmodifiableSet(_relationships);
}
@Override
protected List<PropertyDescriptor> getSupportedPropertyDescriptors() {
return propertyDescriptors;
}
@Override
public Set<Relationship> getRelationships() {
return relationships;
}
@OnScheduled
public void setup(ProcessContext context) {
boolean confFileProvided = context.getProperty(ORC_CONFIGURATION_RESOURCES).isSet();
if (confFileProvided) {
final String configFiles = context.getProperty(ORC_CONFIGURATION_RESOURCES).getValue();
orcConfig = HiveJdbcCommon.getConfigurationFromFiles(configFiles);
}
}
@Override
public void onTrigger(final ProcessContext context, final ProcessSession session) throws ProcessException {
FlowFile flowFile = session.get();
if (flowFile == null) {
return;
}
try {
long startTime = System.currentTimeMillis();
final long stripeSize = context.getProperty(STRIPE_SIZE).asDataSize(DataUnit.B).longValue();
final int bufferSize = context.getProperty(BUFFER_SIZE).asDataSize(DataUnit.B).intValue();
final CompressionKind compressionType = CompressionKind.valueOf(context.getProperty(COMPRESSION_TYPE).getValue());
final AtomicReference<Schema> hiveAvroSchema = new AtomicReference<>(null);
final AtomicInteger totalRecordCount = new AtomicInteger(0);
final String fileName = flowFile.getAttribute(CoreAttributes.FILENAME.key());
flowFile = session.write(flowFile, new StreamCallback() {
@Override
public void process(final InputStream rawIn, final OutputStream rawOut) throws IOException {
try (final InputStream in = new BufferedInputStream(rawIn);
final OutputStream out = new BufferedOutputStream(rawOut);
final DataFileStream<GenericRecord> reader = new DataFileStream<>(in, new GenericDatumReader<>())) {
// Create ORC schema from Avro schema
Schema avroSchema = reader.getSchema();
TypeDescription orcSchema = OrcUtils.getOrcField(avroSchema);
if (orcConfig == null) {
orcConfig = new Configuration();
}
OrcFile.WriterOptions options = OrcFile.writerOptions(orcConfig)
.setSchema(orcSchema)
.stripeSize(stripeSize)
.bufferSize(bufferSize)
.compress(compressionType)
.version(OrcFile.Version.CURRENT);
OrcFlowFileWriter orcWriter = new OrcFlowFileWriter(out, new Path(fileName), options);
try {
VectorizedRowBatch batch = orcSchema.createRowBatch();
int recordCount = 0;
int recordsInBatch = 0;
GenericRecord currRecord = null;
while (reader.hasNext()) {
currRecord = reader.next(currRecord);
List<Schema.Field> fields = currRecord.getSchema().getFields();
if (fields != null) {
MutableInt[] vectorOffsets = new MutableInt[fields.size()];
for (int i = 0; i < fields.size(); i++) {
vectorOffsets[i] = new MutableInt(0);
Schema.Field field = fields.get(i);
Schema fieldSchema = field.schema();
Object o = currRecord.get(field.name());
try {
OrcUtils.putToRowBatch(batch.cols[i], vectorOffsets[i], recordsInBatch, fieldSchema, o);
} catch (ArrayIndexOutOfBoundsException aioobe) {
getLogger().error("Index out of bounds at record {} for column {}, type {}, and object {}",
new Object[]{recordsInBatch, i, fieldSchema.getType().getName(), o.toString()},
aioobe);
throw new IOException(aioobe);
}
}
}
recordCount++;
recordsInBatch++;
if (recordsInBatch == batch.getMaxSize()) {
// add batch and start a new one
batch.size = recordsInBatch;
orcWriter.addRowBatch(batch);
batch = orcSchema.createRowBatch();
recordsInBatch = 0;
}
}
// If there are records in the batch, add the batch
if (recordsInBatch > 0) {
batch.size = recordsInBatch;
orcWriter.addRowBatch(batch);
}
hiveAvroSchema.set(avroSchema);
totalRecordCount.set(recordCount);
} finally {
// finished writing this record, close the writer (which will flush to the flow file)
orcWriter.close();
}
}
}
});
final String hiveTableName = context.getProperty(HIVE_TABLE_NAME).isSet()
? context.getProperty(HIVE_TABLE_NAME).evaluateAttributeExpressions(flowFile).getValue()
: OrcUtils.normalizeHiveTableName(hiveAvroSchema.get().getFullName());
String hiveDDL = OrcUtils.generateHiveDDL(hiveAvroSchema.get(), hiveTableName);
// Add attributes and transfer to success
flowFile = session.putAttribute(flowFile, RECORD_COUNT_ATTRIBUTE, Integer.toString(totalRecordCount.get()));
flowFile = session.putAttribute(flowFile, HIVE_DDL_ATTRIBUTE, hiveDDL);
StringBuilder newFilename = new StringBuilder();
int extensionIndex = fileName.lastIndexOf(".");
if (extensionIndex != -1) {
newFilename.append(fileName.substring(0, extensionIndex));
} else {
newFilename.append(fileName);
}
newFilename.append(".orc");
flowFile = session.putAttribute(flowFile, CoreAttributes.MIME_TYPE.key(), ORC_MIME_TYPE);
flowFile = session.putAttribute(flowFile, CoreAttributes.FILENAME.key(), newFilename.toString());
session.transfer(flowFile, REL_SUCCESS);
session.getProvenanceReporter().modifyContent(flowFile, "Converted "+totalRecordCount.get()+" records", System.currentTimeMillis() - startTime);
} catch (final ProcessException pe) {
getLogger().error("Failed to convert {} from Avro to ORC due to {}; transferring to failure", new Object[]{flowFile, pe});
session.transfer(flowFile, REL_FAILURE);
}
}
}

View File

@ -1,408 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.nifi.util.orc;
import org.apache.avro.Schema;
import org.apache.commons.lang3.StringUtils;
import org.apache.commons.lang3.mutable.MutableInt;
import org.apache.hadoop.hive.ql.exec.vector.BytesColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.ColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.DoubleColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.ListColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.LongColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.MapColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.UnionColumnVector;
import org.apache.orc.TypeDescription;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
/**
* Utility methods for ORC support (conversion from Avro, conversion to Hive types, e.g.
*/
public class OrcUtils {
public static void putToRowBatch(ColumnVector col, MutableInt vectorOffset, int rowNumber, Schema fieldSchema, Object o) {
Schema.Type fieldType = fieldSchema.getType();
if (fieldType == null) {
throw new IllegalArgumentException("Field type is null");
}
if (o == null) {
col.isNull[rowNumber] = true;
} else {
switch (fieldType) {
case INT:
((LongColumnVector) col).vector[rowNumber] = (int) o;
break;
case LONG:
((LongColumnVector) col).vector[rowNumber] = (long) o;
break;
case BOOLEAN:
((LongColumnVector) col).vector[rowNumber] = ((boolean) o) ? 1 : 0;
break;
case BYTES:
ByteBuffer byteBuffer = ((ByteBuffer) o);
int size = byteBuffer.remaining();
byte[] buf = new byte[size];
byteBuffer.get(buf, 0, size);
((BytesColumnVector) col).setVal(rowNumber, buf);
break;
case DOUBLE:
((DoubleColumnVector) col).vector[rowNumber] = (double) o;
break;
case FLOAT:
((DoubleColumnVector) col).vector[rowNumber] = (float) o;
break;
case STRING:
case ENUM:
((BytesColumnVector) col).setVal(rowNumber, o.toString().getBytes());
break;
case UNION:
// If the union only has one non-null type in it, it was flattened in the ORC schema
if (col instanceof UnionColumnVector) {
UnionColumnVector union = ((UnionColumnVector) col);
Schema.Type avroType = OrcUtils.getAvroSchemaTypeOfObject(o);
// Find the index in the union with the matching Avro type
int unionIndex = -1;
List<Schema> types = fieldSchema.getTypes();
final int numFields = types.size();
for (int i = 0; i < numFields && unionIndex == -1; i++) {
if (avroType.equals(types.get(i).getType())) {
unionIndex = i;
}
}
if (unionIndex == -1) {
throw new IllegalArgumentException("Object type " + avroType.getName() + " not found in union '" + fieldSchema.getName() + "'");
}
// Need nested vector offsets
MutableInt unionVectorOffset = new MutableInt(0);
putToRowBatch(union.fields[unionIndex], unionVectorOffset, rowNumber, fieldSchema.getTypes().get(unionIndex), o);
} else {
// Find and use the non-null type from the union
List<Schema> types = fieldSchema.getTypes();
Schema effectiveType = null;
for (Schema type : types) {
if (!Schema.Type.NULL.equals(type.getType())) {
effectiveType = type;
break;
}
}
putToRowBatch(col, vectorOffset, rowNumber, effectiveType, o);
}
break;
case ARRAY:
Schema arrayType = fieldSchema.getElementType();
ListColumnVector array = ((ListColumnVector) col);
if (o instanceof int[] || o instanceof long[]) {
int length = (o instanceof int[]) ? ((int[]) o).length : ((long[]) o).length;
for (int i = 0; i < length; i++) {
((LongColumnVector) array.child).vector[vectorOffset.getValue() + i] =
(o instanceof int[]) ? ((int[]) o)[i] : ((long[]) o)[i];
}
array.offsets[rowNumber] = vectorOffset.longValue();
array.lengths[rowNumber] = length;
vectorOffset.add(length);
} else if (o instanceof float[]) {
float[] floatArray = (float[]) o;
for (int i = 0; i < floatArray.length; i++) {
((DoubleColumnVector) array.child).vector[vectorOffset.getValue() + i] = floatArray[i];
}
array.offsets[rowNumber] = vectorOffset.longValue();
array.lengths[rowNumber] = floatArray.length;
vectorOffset.add(floatArray.length);
} else if (o instanceof double[]) {
double[] doubleArray = (double[]) o;
for (int i = 0; i < doubleArray.length; i++) {
((DoubleColumnVector) array.child).vector[vectorOffset.getValue() + i] = doubleArray[i];
}
array.offsets[rowNumber] = vectorOffset.longValue();
array.lengths[rowNumber] = doubleArray.length;
vectorOffset.add(doubleArray.length);
} else if (o instanceof String[]) {
String[] stringArray = (String[]) o;
BytesColumnVector byteCol = ((BytesColumnVector) array.child);
for (int i = 0; i < stringArray.length; i++) {
if (stringArray[i] == null) {
byteCol.isNull[rowNumber] = true;
} else {
byteCol.setVal(vectorOffset.getValue() + i, stringArray[i].getBytes());
}
}
array.offsets[rowNumber] = vectorOffset.longValue();
array.lengths[rowNumber] = stringArray.length;
vectorOffset.add(stringArray.length);
} else if (o instanceof Map[]) {
Map[] mapArray = (Map[]) o;
MutableInt mapVectorOffset = new MutableInt(0);
for (int i = 0; i < mapArray.length; i++) {
if (mapArray[i] == null) {
array.child.isNull[rowNumber] = true;
} else {
putToRowBatch(array.child, mapVectorOffset, vectorOffset.getValue() + i, arrayType, mapArray[i]);
}
}
array.offsets[rowNumber] = vectorOffset.longValue();
array.lengths[rowNumber] = mapArray.length;
vectorOffset.add(mapArray.length);
} else if (o instanceof List) {
List listArray = (List) o;
MutableInt listVectorOffset = new MutableInt(0);
int numElements = listArray.size();
for (int i = 0; i < numElements; i++) {
if (listArray.get(i) == null) {
array.child.isNull[rowNumber] = true;
} else {
putToRowBatch(array.child, listVectorOffset, vectorOffset.getValue() + i, arrayType, listArray.get(i));
}
}
array.offsets[rowNumber] = vectorOffset.longValue();
array.lengths[rowNumber] = numElements;
vectorOffset.add(numElements);
} else {
throw new IllegalArgumentException("Object class " + o.getClass().getName() + " not supported as an ORC list/array");
}
break;
case MAP:
MapColumnVector map = ((MapColumnVector) col);
// Avro maps require String keys
@SuppressWarnings("unchecked")
Map<String, ?> mapObj = (Map<String, ?>) o;
int effectiveRowNumber = vectorOffset.getValue();
for (Map.Entry<String, ?> entry : mapObj.entrySet()) {
putToRowBatch(map.keys, vectorOffset, effectiveRowNumber, Schema.create(Schema.Type.STRING), entry.getKey());
putToRowBatch(map.values, vectorOffset, effectiveRowNumber, fieldSchema.getValueType(), entry.getValue());
effectiveRowNumber++;
}
map.offsets[rowNumber] = vectorOffset.longValue();
map.lengths[rowNumber] = mapObj.size();
vectorOffset.add(mapObj.size());
break;
default:
throw new IllegalArgumentException("Field type " + fieldType.getName() + " not recognized");
}
}
}
public static String normalizeHiveTableName(String name) {
return name.replaceAll("[\\. ]", "_");
}
public static String generateHiveDDL(Schema avroSchema, String tableName) {
Schema.Type schemaType = avroSchema.getType();
StringBuilder sb = new StringBuilder("CREATE EXTERNAL TABLE IF NOT EXISTS ");
sb.append(tableName);
sb.append(" (");
if (Schema.Type.RECORD.equals(schemaType)) {
List<String> hiveColumns = new ArrayList<>();
List<Schema.Field> fields = avroSchema.getFields();
if (fields != null) {
hiveColumns.addAll(
fields.stream().map(field -> field.name() + " " + getHiveTypeFromAvroType(field.schema())).collect(Collectors.toList()));
}
sb.append(StringUtils.join(hiveColumns, ", "));
sb.append(") STORED AS ORC");
return sb.toString();
} else {
throw new IllegalArgumentException("Avro schema is of type " + schemaType.getName() + ", not RECORD");
}
}
public static void addOrcField(TypeDescription orcSchema, Schema.Field avroField) {
Schema fieldSchema = avroField.schema();
String fieldName = avroField.name();
orcSchema.addField(fieldName, getOrcField(fieldSchema));
}
public static TypeDescription getOrcField(Schema fieldSchema) throws IllegalArgumentException {
Schema.Type fieldType = fieldSchema.getType();
switch (fieldType) {
case INT:
case LONG:
case BOOLEAN:
case BYTES:
case DOUBLE:
case FLOAT:
case STRING:
return getPrimitiveOrcTypeFromPrimitiveAvroType(fieldType);
case UNION:
List<Schema> unionFieldSchemas = fieldSchema.getTypes();
TypeDescription unionSchema = TypeDescription.createUnion();
if (unionFieldSchemas != null) {
// Ignore null types in union
List<TypeDescription> orcFields = unionFieldSchemas.stream().filter(
unionFieldSchema -> !Schema.Type.NULL.equals(unionFieldSchema.getType())).map(OrcUtils::getOrcField).collect(Collectors.toList());
// Flatten the field if the union only has one non-null element
if (orcFields.size() == 1) {
return orcFields.get(0);
} else {
orcFields.forEach(unionSchema::addUnionChild);
}
}
return unionSchema;
case ARRAY:
return TypeDescription.createList(getOrcField(fieldSchema.getElementType()));
case MAP:
return TypeDescription.createMap(TypeDescription.createString(), getOrcField(fieldSchema.getValueType()));
case RECORD:
TypeDescription record = TypeDescription.createStruct();
List<Schema.Field> avroFields = fieldSchema.getFields();
if (avroFields != null) {
avroFields.forEach(avroField -> addOrcField(record, avroField));
}
return record;
case ENUM:
// An enum value is just a String for ORC/Hive
return TypeDescription.createString();
default:
throw new IllegalArgumentException("Did not recognize Avro type " + fieldType.getName());
}
}
public static Schema.Type getAvroSchemaTypeOfObject(Object o) {
if (o == null) {
return Schema.Type.NULL;
} else if (o instanceof Integer) {
return Schema.Type.INT;
} else if (o instanceof Long) {
return Schema.Type.LONG;
} else if (o instanceof Boolean) {
return Schema.Type.BOOLEAN;
} else if (o instanceof byte[]) {
return Schema.Type.BYTES;
} else if (o instanceof Float) {
return Schema.Type.FLOAT;
} else if (o instanceof Double) {
return Schema.Type.DOUBLE;
} else if (o instanceof Enum) {
return Schema.Type.ENUM;
} else if (o instanceof Object[]) {
return Schema.Type.ARRAY;
} else if (o instanceof List) {
return Schema.Type.ARRAY;
} else if (o instanceof Map) {
return Schema.Type.MAP;
} else {
throw new IllegalArgumentException("Object of class " + o.getClass() + " is not a supported Avro Type");
}
}
public static TypeDescription getPrimitiveOrcTypeFromPrimitiveAvroType(Schema.Type avroType) throws IllegalArgumentException {
if (avroType == null) {
throw new IllegalArgumentException("Avro type is null");
}
switch (avroType) {
case INT:
return TypeDescription.createInt();
case LONG:
return TypeDescription.createLong();
case BOOLEAN:
return TypeDescription.createBoolean();
case BYTES:
return TypeDescription.createBinary();
case DOUBLE:
return TypeDescription.createDouble();
case FLOAT:
return TypeDescription.createFloat();
case STRING:
return TypeDescription.createString();
default:
throw new IllegalArgumentException("Avro type " + avroType.getName() + " is not a primitive type");
}
}
public static String getHiveTypeFromAvroType(Schema avroSchema) {
if (avroSchema == null) {
throw new IllegalArgumentException("Avro schema is null");
}
Schema.Type avroType = avroSchema.getType();
switch (avroType) {
case INT:
return "INT";
case LONG:
return "BIGINT";
case BOOLEAN:
return "BOOLEAN";
case BYTES:
return "BINARY";
case DOUBLE:
return "DOUBLE";
case FLOAT:
return "FLOAT";
case STRING:
case ENUM:
return "STRING";
case UNION:
List<Schema> unionFieldSchemas = avroSchema.getTypes();
if (unionFieldSchemas != null) {
List<String> hiveFields = new ArrayList<>();
for (Schema unionFieldSchema : unionFieldSchemas) {
Schema.Type unionFieldSchemaType = unionFieldSchema.getType();
// Ignore null types in union
if (!Schema.Type.NULL.equals(unionFieldSchemaType)) {
hiveFields.add(getHiveTypeFromAvroType(unionFieldSchema));
}
}
// Flatten the field if the union only has one non-null element
return (hiveFields.size() == 1)
? hiveFields.get(0)
: "UNIONTYPE<" + StringUtils.join(hiveFields, ", ") + ">";
}
break;
case MAP:
return "MAP<STRING, " + getHiveTypeFromAvroType(avroSchema.getValueType()) + ">";
case ARRAY:
return "ARRAY<" + getHiveTypeFromAvroType(avroSchema.getElementType()) + ">";
case RECORD:
List<Schema.Field> recordFields = avroSchema.getFields();
if (recordFields != null) {
List<String> hiveFields = recordFields.stream().map(
recordField -> recordField.name() + ":" + getHiveTypeFromAvroType(recordField.schema())).collect(Collectors.toList());
return "STRUCT<" + StringUtils.join(hiveFields, ", ") + ">";
}
break;
default:
break;
}
throw new IllegalArgumentException("Error converting Avro type " + avroType.getName() + " to Hive type");
}
}

View File

@ -14,5 +14,4 @@
# limitations under the License.
org.apache.nifi.processors.hive.SelectHiveQL
org.apache.nifi.processors.hive.PutHiveQL
org.apache.nifi.processors.hive.ConvertAvroToORC
org.apache.nifi.processors.hive.PutHiveStreaming

View File

@ -1,260 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.nifi.processors.hive;
import org.apache.avro.Schema;
import org.apache.avro.file.DataFileWriter;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericDatumWriter;
import org.apache.avro.io.DatumWriter;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.ql.exec.vector.BytesColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.DoubleColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.ListColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.LongColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.MapColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.UnionColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch;
import org.apache.nifi.flowfile.attributes.CoreAttributes;
import org.apache.nifi.util.MockFlowFile;
import org.apache.nifi.util.TestRunner;
import org.apache.nifi.util.TestRunners;
import org.apache.nifi.util.orc.TestOrcUtils;
import org.apache.orc.OrcFile;
import org.apache.orc.Reader;
import org.apache.orc.RecordReader;
import org.junit.Before;
import org.junit.Test;
import java.io.ByteArrayOutputStream;
import java.io.FileOutputStream;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.TreeMap;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
/**
* Unit tests for ConvertAvroToORC processor
*/
public class TestConvertAvroToORC {
private ConvertAvroToORC processor;
private TestRunner runner;
@Before
public void setUp() throws Exception {
processor = new ConvertAvroToORC();
runner = TestRunners.newTestRunner(processor);
}
@Test
public void test_Setup() throws Exception {
}
@Test
public void test_onTrigger_primitive_record() throws Exception {
GenericData.Record record = TestOrcUtils.buildPrimitiveAvroRecord(10, 20L, true, 30.0f, 40, StandardCharsets.UTF_8.encode("Hello"), "World");
DatumWriter<GenericData.Record> writer = new GenericDatumWriter<>(record.getSchema());
DataFileWriter<GenericData.Record> fileWriter = new DataFileWriter<>(writer);
ByteArrayOutputStream out = new ByteArrayOutputStream();
fileWriter.create(record.getSchema(), out);
fileWriter.append(record);
// Put another record in
record = TestOrcUtils.buildPrimitiveAvroRecord(1, 2L, false, 3.0f, 4L, StandardCharsets.UTF_8.encode("I am"), "another record");
fileWriter.append(record);
// And one more
record = TestOrcUtils.buildPrimitiveAvroRecord(100, 200L, true, 300.0f, 400L, StandardCharsets.UTF_8.encode("Me"), "too!");
fileWriter.append(record);
fileWriter.flush();
fileWriter.close();
out.close();
Map<String,String> attributes = new HashMap<String,String>(){{
put(CoreAttributes.FILENAME.key(), "test.avro");
}};
runner.enqueue(out.toByteArray(), attributes);
runner.run();
runner.assertAllFlowFilesTransferred(ConvertAvroToORC.REL_SUCCESS, 1);
// Write the flow file out to disk, since the ORC Reader needs a path
MockFlowFile resultFlowFile = runner.getFlowFilesForRelationship(ConvertAvroToORC.REL_SUCCESS).get(0);
assertEquals("CREATE EXTERNAL TABLE IF NOT EXISTS test_record (int INT, long BIGINT, boolean BOOLEAN, float FLOAT, double DOUBLE, bytes BINARY, string STRING)"
+ " STORED AS ORC", resultFlowFile.getAttribute(ConvertAvroToORC.HIVE_DDL_ATTRIBUTE));
assertEquals("3", resultFlowFile.getAttribute(ConvertAvroToORC.RECORD_COUNT_ATTRIBUTE));
assertEquals("test.orc", resultFlowFile.getAttribute(CoreAttributes.FILENAME.key()));
byte[] resultContents = runner.getContentAsByteArray(resultFlowFile);
FileOutputStream fos = new FileOutputStream("target/test1.orc");
fos.write(resultContents);
fos.flush();
fos.close();
Configuration conf = new Configuration();
FileSystem fs = FileSystem.getLocal(conf);
Reader reader = OrcFile.createReader(new Path("target/test1.orc"), OrcFile.readerOptions(conf).filesystem(fs));
RecordReader rows = reader.rows();
VectorizedRowBatch batch = reader.getSchema().createRowBatch();
assertTrue(rows.nextBatch(batch));
assertTrue(batch.cols[0] instanceof LongColumnVector);
assertEquals(10, ((LongColumnVector) batch.cols[0]).vector[0]);
assertEquals(1, ((LongColumnVector) batch.cols[0]).vector[1]);
assertEquals(100, ((LongColumnVector) batch.cols[0]).vector[2]);
assertTrue(batch.cols[1] instanceof LongColumnVector);
assertEquals(20, ((LongColumnVector) batch.cols[1]).vector[0]);
assertEquals(2, ((LongColumnVector) batch.cols[1]).vector[1]);
assertEquals(200, ((LongColumnVector) batch.cols[1]).vector[2]);
assertTrue(batch.cols[2] instanceof LongColumnVector);
assertEquals(1, ((LongColumnVector) batch.cols[2]).vector[0]);
assertEquals(0, ((LongColumnVector) batch.cols[2]).vector[1]);
assertEquals(1, ((LongColumnVector) batch.cols[2]).vector[2]);
assertTrue(batch.cols[3] instanceof DoubleColumnVector);
assertEquals(30.0f, ((DoubleColumnVector) batch.cols[3]).vector[0], Double.MIN_NORMAL);
assertEquals(3.0f, ((DoubleColumnVector) batch.cols[3]).vector[1], Double.MIN_NORMAL);
assertEquals(300.0f, ((DoubleColumnVector) batch.cols[3]).vector[2], Double.MIN_NORMAL);
assertTrue(batch.cols[4] instanceof DoubleColumnVector);
assertEquals(40.0f, ((DoubleColumnVector) batch.cols[4]).vector[0], Double.MIN_NORMAL);
assertEquals(4.0f, ((DoubleColumnVector) batch.cols[4]).vector[1], Double.MIN_NORMAL);
assertEquals(400.0f, ((DoubleColumnVector) batch.cols[4]).vector[2], Double.MIN_NORMAL);
assertTrue(batch.cols[5] instanceof BytesColumnVector);
assertEquals("Hello", ((BytesColumnVector) batch.cols[5]).toString(0));
assertEquals("I am", ((BytesColumnVector) batch.cols[5]).toString(1));
assertEquals("Me", ((BytesColumnVector) batch.cols[5]).toString(2));
assertTrue(batch.cols[6] instanceof BytesColumnVector);
assertEquals("World", ((BytesColumnVector) batch.cols[6]).toString(0));
assertEquals("another record", ((BytesColumnVector) batch.cols[6]).toString(1));
assertEquals("too!", ((BytesColumnVector) batch.cols[6]).toString(2));
}
@Test
public void test_onTrigger_complex_record() throws Exception {
Map<String, Double> mapData1 = new TreeMap<String, Double>() {{
put("key1", 1.0);
put("key2", 2.0);
}};
GenericData.Record record = TestOrcUtils.buildComplexAvroRecord(10, mapData1, "DEF", 3.0f, Arrays.asList(10, 20));
DatumWriter<GenericData.Record> writer = new GenericDatumWriter<>(record.getSchema());
DataFileWriter<GenericData.Record> fileWriter = new DataFileWriter<>(writer);
ByteArrayOutputStream out = new ByteArrayOutputStream();
fileWriter.create(record.getSchema(), out);
fileWriter.append(record);
// Put another record in
Map<String, Double> mapData2 = new TreeMap<String, Double>() {{
put("key1", 3.0);
put("key2", 4.0);
}};
record = TestOrcUtils.buildComplexAvroRecord(null, mapData2, "XYZ", 4L, Arrays.asList(100, 200));
fileWriter.append(record);
fileWriter.flush();
fileWriter.close();
out.close();
Map<String,String> attributes = new HashMap<String,String>(){{
put(CoreAttributes.FILENAME.key(), "test");
}};
runner.enqueue(out.toByteArray(), attributes);
runner.run();
runner.assertAllFlowFilesTransferred(ConvertAvroToORC.REL_SUCCESS, 1);
// Write the flow file out to disk, since the ORC Reader needs a path
MockFlowFile resultFlowFile = runner.getFlowFilesForRelationship(ConvertAvroToORC.REL_SUCCESS).get(0);
assertEquals("CREATE EXTERNAL TABLE IF NOT EXISTS complex_record " +
"(myInt INT, myMap MAP<STRING, DOUBLE>, myEnum STRING, myLongOrFloat UNIONTYPE<BIGINT, FLOAT>, myIntList ARRAY<INT>)"
+ " STORED AS ORC", resultFlowFile.getAttribute(ConvertAvroToORC.HIVE_DDL_ATTRIBUTE));
assertEquals("2", resultFlowFile.getAttribute(ConvertAvroToORC.RECORD_COUNT_ATTRIBUTE));
assertEquals("test.orc", resultFlowFile.getAttribute(CoreAttributes.FILENAME.key()));
byte[] resultContents = runner.getContentAsByteArray(resultFlowFile);
FileOutputStream fos = new FileOutputStream("target/test1.orc");
fos.write(resultContents);
fos.flush();
fos.close();
Configuration conf = new Configuration();
FileSystem fs = FileSystem.getLocal(conf);
Reader reader = OrcFile.createReader(new Path("target/test1.orc"), OrcFile.readerOptions(conf).filesystem(fs));
RecordReader rows = reader.rows();
VectorizedRowBatch batch = reader.getSchema().createRowBatch();
assertTrue(rows.nextBatch(batch));
assertTrue(batch.cols[0] instanceof LongColumnVector);
assertEquals(10, ((LongColumnVector) batch.cols[0]).vector[0]);
assertTrue(batch.cols[1] instanceof MapColumnVector);
assertTrue(batch.cols[2] instanceof BytesColumnVector);
assertTrue(batch.cols[3] instanceof UnionColumnVector);
StringBuilder buffer = new StringBuilder();
batch.cols[3].stringifyValue(buffer, 1);
assertEquals("{\"tag\": 0, \"value\": 4}", buffer.toString());
assertTrue(batch.cols[4] instanceof ListColumnVector);
}
@Test
public void test_onTrigger_multiple_batches() throws Exception {
Schema recordSchema = TestOrcUtils.buildPrimitiveAvroSchema();
DatumWriter<GenericData.Record> writer = new GenericDatumWriter<>(recordSchema);
DataFileWriter<GenericData.Record> fileWriter = new DataFileWriter<>(writer);
ByteArrayOutputStream out = new ByteArrayOutputStream();
fileWriter.create(recordSchema, out);
GenericData.Record record;
for (int i = 1;i<=2000;i++) {
record = TestOrcUtils.buildPrimitiveAvroRecord(i, 2L * i, true, 30.0f * i, 40L * i, StandardCharsets.UTF_8.encode("Hello"), "World");
fileWriter.append(record);
}
fileWriter.flush();
fileWriter.close();
out.close();
runner.enqueue(out.toByteArray());
runner.run();
runner.assertAllFlowFilesTransferred(ConvertAvroToORC.REL_SUCCESS, 1);
// Write the flow file out to disk, since the ORC Reader needs a path
MockFlowFile resultFlowFile = runner.getFlowFilesForRelationship(ConvertAvroToORC.REL_SUCCESS).get(0);
assertEquals("2000", resultFlowFile.getAttribute(ConvertAvroToORC.RECORD_COUNT_ATTRIBUTE));
byte[] resultContents = runner.getContentAsByteArray(resultFlowFile);
FileOutputStream fos = new FileOutputStream("target/test1.orc");
fos.write(resultContents);
fos.flush();
fos.close();
Configuration conf = new Configuration();
FileSystem fs = FileSystem.getLocal(conf);
Reader reader = OrcFile.createReader(new Path("target/test1.orc"), OrcFile.readerOptions(conf).filesystem(fs));
RecordReader rows = reader.rows();
VectorizedRowBatch batch = reader.getSchema().createRowBatch();
assertTrue(rows.nextBatch(batch));
// At least 2 batches were created
assertTrue(rows.nextBatch(batch));
}
}

View File

@ -1,555 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.nifi.util.orc;
import org.apache.avro.Schema;
import org.apache.avro.SchemaBuilder;
import org.apache.avro.generic.GenericData;
import org.apache.commons.lang3.mutable.MutableInt;
import org.apache.hadoop.hive.ql.exec.vector.BytesColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.DoubleColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.ListColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.LongColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.MapColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.UnionColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch;
import org.apache.orc.TypeDescription;
import org.junit.Test;
import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
/**
* Unit tests for the OrcUtils helper class
*/
public class TestOrcUtils {
@Test
public void test_getOrcField_primitive() throws Exception {
// Expected ORC types
TypeDescription[] expectedTypes = {
TypeDescription.createInt(),
TypeDescription.createLong(),
TypeDescription.createBoolean(),
TypeDescription.createFloat(),
TypeDescription.createDouble(),
TypeDescription.createBinary(),
TypeDescription.createString(),
};
// Build a fake Avro record with all types
Schema testSchema = buildPrimitiveAvroSchema();
List<Schema.Field> fields = testSchema.getFields();
for (int i = 0; i < fields.size(); i++) {
assertEquals(expectedTypes[i], OrcUtils.getOrcField(fields.get(i).schema()));
}
}
@Test
public void test_getOrcField_union_optional_type() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("union").type().unionOf().nullBuilder().endNull().and().booleanType().endUnion().noDefault();
Schema testSchema = builder.endRecord();
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("union").schema());
assertEquals(TypeDescription.createBoolean(), orcType);
}
@Test
public void test_getOrcField_union() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("union").type().unionOf().intType().and().booleanType().endUnion().noDefault();
Schema testSchema = builder.endRecord();
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("union").schema());
assertEquals(
TypeDescription.createUnion()
.addUnionChild(TypeDescription.createInt())
.addUnionChild(TypeDescription.createBoolean()),
orcType);
}
@Test
public void test_getOrcField_map() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("map").type().map().values().doubleType().noDefault();
Schema testSchema = builder.endRecord();
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("map").schema());
assertEquals(
TypeDescription.createMap(TypeDescription.createString(), TypeDescription.createDouble()),
orcType);
}
@Test
public void test_getOrcField_nested_map() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("map").type().map().values().map().values().doubleType().noDefault();
Schema testSchema = builder.endRecord();
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("map").schema());
assertEquals(
TypeDescription.createMap(TypeDescription.createString(),
TypeDescription.createMap(TypeDescription.createString(), TypeDescription.createDouble())),
orcType);
}
@Test
public void test_getOrcField_array() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("array").type().array().items().longType().noDefault();
Schema testSchema = builder.endRecord();
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("array").schema());
assertEquals(
TypeDescription.createList(TypeDescription.createLong()),
orcType);
}
@Test
public void test_getOrcField_complex_array() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("array").type().array().items().map().values().floatType().noDefault();
Schema testSchema = builder.endRecord();
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("array").schema());
assertEquals(
TypeDescription.createList(TypeDescription.createMap(TypeDescription.createString(), TypeDescription.createFloat())),
orcType);
}
@Test
public void test_getOrcField_record() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("int").type().intType().noDefault();
builder.name("long").type().longType().longDefault(1L);
builder.name("array").type().array().items().stringType().noDefault();
Schema testSchema = builder.endRecord();
TypeDescription orcType = OrcUtils.getOrcField(testSchema);
assertEquals(
TypeDescription.createStruct()
.addField("int", TypeDescription.createInt())
.addField("long", TypeDescription.createLong())
.addField("array", TypeDescription.createList(TypeDescription.createString())),
orcType);
}
@Test
public void test_getOrcField_enum() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("enumField").type().enumeration("enum").symbols("a", "b", "c").enumDefault("a");
Schema testSchema = builder.endRecord();
TypeDescription orcType = OrcUtils.getOrcField(testSchema.getField("enumField").schema());
assertEquals(TypeDescription.createString(), orcType);
}
@Test
public void test_getPrimitiveOrcTypeFromPrimitiveAvroType() throws Exception {
// Expected ORC types
TypeDescription[] expectedTypes = {
TypeDescription.createInt(),
TypeDescription.createLong(),
TypeDescription.createBoolean(),
TypeDescription.createFloat(),
TypeDescription.createDouble(),
TypeDescription.createBinary(),
TypeDescription.createString(),
};
Schema testSchema = buildPrimitiveAvroSchema();
List<Schema.Field> fields = testSchema.getFields();
for (int i = 0; i < fields.size(); i++) {
assertEquals(expectedTypes[i], OrcUtils.getPrimitiveOrcTypeFromPrimitiveAvroType(fields.get(i).schema().getType()));
}
}
@Test(expected = IllegalArgumentException.class)
public void test_getPrimitiveOrcTypeFromPrimitiveAvroType_badType() throws Exception {
Schema.Type nonPrimitiveType = Schema.Type.ARRAY;
OrcUtils.getPrimitiveOrcTypeFromPrimitiveAvroType(nonPrimitiveType);
}
@Test
public void test_putRowToBatch() {
TypeDescription orcSchema = buildPrimitiveOrcSchema();
VectorizedRowBatch batch = orcSchema.createRowBatch();
Schema avroSchema = buildPrimitiveAvroSchema();
List<Schema.Field> fields = avroSchema.getFields();
GenericData.Record record = buildPrimitiveAvroRecord(1, 2L, false, 1.0f, 3.0, ByteBuffer.wrap("Hello".getBytes()), "World");
for (int i = 0; i < fields.size(); i++) {
OrcUtils.putToRowBatch(batch.cols[i], new MutableInt(0), 0, fields.get(i).schema(), record.get(i));
}
assertEquals(1, ((LongColumnVector) batch.cols[0]).vector[0]);
assertEquals(2, ((LongColumnVector) batch.cols[1]).vector[0]);
assertEquals(0, ((LongColumnVector) batch.cols[2]).vector[0]);
assertEquals(1.0, ((DoubleColumnVector) batch.cols[3]).vector[0], Double.MIN_NORMAL);
assertEquals(3.0, ((DoubleColumnVector) batch.cols[4]).vector[0], Double.MIN_NORMAL);
assertEquals("Hello", ((BytesColumnVector) batch.cols[5]).toString(0));
assertEquals("World", ((BytesColumnVector) batch.cols[6]).toString(0));
}
@Test
public void test_putRowToBatch_union() {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("union").type().unionOf().intType().and().floatType().endUnion().noDefault();
Schema testSchema = builder.endRecord();
GenericData.Record row = new GenericData.Record(testSchema);
row.put("union", 2);
TypeDescription orcSchema = TypeDescription.createUnion()
.addUnionChild(TypeDescription.createInt())
.addUnionChild(TypeDescription.createFloat());
VectorizedRowBatch batch = orcSchema.createRowBatch();
batch.ensureSize(2);
OrcUtils.putToRowBatch(batch.cols[0], new MutableInt(0), 0, testSchema.getField("union").schema(), row.get("union"));
UnionColumnVector union = ((UnionColumnVector) batch.cols[0]);
// verify the value is in the union field of type 'int'
assertEquals(2, ((LongColumnVector) union.fields[0]).vector[0]);
assertEquals(0.0, ((DoubleColumnVector) union.fields[1]).vector[0], Double.MIN_NORMAL);
row.put("union", 2.0f);
OrcUtils.putToRowBatch(batch.cols[0], new MutableInt(0), 1, testSchema.getField("union").schema(), row.get("union"));
union = ((UnionColumnVector) batch.cols[0]);
// verify the value is in the union field of type 'double'
assertEquals(0, ((LongColumnVector) union.fields[0]).vector[1]);
assertEquals(2.0, ((DoubleColumnVector) union.fields[1]).vector[1], Double.MIN_NORMAL);
}
@Test
public void test_putRowToBatch_optional_union() {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("union").type().unionOf().nullType().and().floatType().endUnion().noDefault();
Schema testSchema = builder.endRecord();
GenericData.Record row = new GenericData.Record(testSchema);
row.put("union", 2.0f);
TypeDescription orcSchema = TypeDescription.createFloat();
VectorizedRowBatch batch = orcSchema.createRowBatch();
batch.ensureSize(2);
OrcUtils.putToRowBatch(batch.cols[0], new MutableInt(0), 0, testSchema.getField("union").schema(), row.get("union"));
assertTrue(batch.cols[0] instanceof DoubleColumnVector);
DoubleColumnVector union = ((DoubleColumnVector) batch.cols[0]);
// verify the value is in the union field of type 'int'
assertEquals(2.0, union.vector[0], Double.MIN_NORMAL);
}
@Test
public void test_putRowToBatch_array_ints() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("array").type().array().items().intType().noDefault();
Schema testSchema = builder.endRecord();
GenericData.Record row = new GenericData.Record(testSchema);
int[] data1 = {1, 2, 3, 4, 5};
row.put("array", data1);
TypeDescription orcSchema = OrcUtils.getOrcField(testSchema.getField("array").schema());
VectorizedRowBatch batch = orcSchema.createRowBatch();
batch.ensureSize(2);
MutableInt vectorOffset = new MutableInt(0);
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 0, testSchema.getField("array").schema(), row.get("array"));
int[] data2 = {10, 20, 30, 40};
row.put("array", data2);
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 1, testSchema.getField("array").schema(), row.get("array"));
ListColumnVector array = ((ListColumnVector) batch.cols[0]);
LongColumnVector dataColumn = ((LongColumnVector) array.child);
// Check the first row, entries 0..4 should have values 1..5
for (int i = 0; i < 5; i++) {
assertEquals(i + 1, dataColumn.vector[i]);
}
// Check the second row, entries 5..8 should have values 10..40 (by tens)
for (int i = 0; i < 4; i++) {
assertEquals((i + 1) * 10, dataColumn.vector[(int) array.offsets[1] + i]);
}
assertEquals(0, dataColumn.vector[9]);
}
@Test
public void test_putRowToBatch_array_floats() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("array").type().array().items().floatType().noDefault();
Schema testSchema = builder.endRecord();
GenericData.Record row = new GenericData.Record(testSchema);
float[] data1 = {1.0f, 2.0f, 3.0f};
row.put("array", data1);
TypeDescription orcSchema = OrcUtils.getOrcField(testSchema.getField("array").schema());
VectorizedRowBatch batch = orcSchema.createRowBatch();
batch.ensureSize(2);
MutableInt vectorOffset = new MutableInt(0);
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 0, testSchema.getField("array").schema(), row.get("array"));
float[] data2 = {40.0f, 41.0f, 42.0f, 43.0f};
row.put("array", data2);
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 1, testSchema.getField("array").schema(), row.get("array"));
ListColumnVector array = ((ListColumnVector) batch.cols[0]);
DoubleColumnVector dataColumn = ((DoubleColumnVector) array.child);
// Check the first row, entries 0..4 should have values 1..5
for (int i = 0; i < 3; i++) {
assertEquals(i + 1.0f, dataColumn.vector[i], Float.MIN_NORMAL);
}
// Check the second row, entries 5..8 should have values 10..40 (by tens)
for (int i = 0; i < 4; i++) {
assertEquals((i + 40.0f), dataColumn.vector[(int) array.offsets[1] + i], Float.MIN_NORMAL);
}
assertEquals(0.0f, dataColumn.vector[9], Float.MIN_NORMAL);
}
@Test
public void test_putRowToBatch_list_doubles() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("array").type().array().items().doubleType().noDefault();
Schema testSchema = builder.endRecord();
GenericData.Record row = new GenericData.Record(testSchema);
List<Double> data1 = Arrays.asList(1.0, 2.0, 3.0);
row.put("array", data1);
TypeDescription orcSchema = OrcUtils.getOrcField(testSchema.getField("array").schema());
VectorizedRowBatch batch = orcSchema.createRowBatch();
batch.ensureSize(2);
MutableInt vectorOffset = new MutableInt(0);
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 0, testSchema.getField("array").schema(), row.get("array"));
List<Double> data2 = Arrays.asList(40.0, 41.0, 42.0, 43.0);
row.put("array", data2);
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 1, testSchema.getField("array").schema(), row.get("array"));
ListColumnVector array = ((ListColumnVector) batch.cols[0]);
DoubleColumnVector dataColumn = ((DoubleColumnVector) array.child);
// Check the first row, entries 0..4 should have values 1..5
for (int i = 0; i < 3; i++) {
assertEquals(i + 1.0f, dataColumn.vector[i], Float.MIN_NORMAL);
}
// Check the second row, entries 5..8 should have values 10..40 (by tens)
for (int i = 0; i < 4; i++) {
assertEquals((i + 40.0), dataColumn.vector[(int) array.offsets[1] + i], Float.MIN_NORMAL);
}
assertEquals(0.0, dataColumn.vector[9], Float.MIN_NORMAL);
}
@Test
public void test_putRowToBatch_array_of_maps() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("array").type().array().items().map().values().floatType().noDefault();
Schema testSchema = builder.endRecord();
Map<String, Float> map1 = new TreeMap<String, Float>() {{
put("key10", 10.0f);
put("key20", 20.0f);
}};
Map<String, Float> map2 = new TreeMap<String, Float>() {{
put("key101", 101.0f);
put("key202", 202.0f);
}};
Map[] maps = new Map[]{map1, map2, null};
GenericData.Record row = new GenericData.Record(testSchema);
row.put("array", maps);
TypeDescription orcSchema = OrcUtils.getOrcField(testSchema.getField("array").schema());
VectorizedRowBatch batch = orcSchema.createRowBatch();
OrcUtils.putToRowBatch(batch.cols[0], new MutableInt(0), 0, testSchema.getField("array").schema(), row.get("array"));
ListColumnVector array = ((ListColumnVector) batch.cols[0]);
MapColumnVector map = ((MapColumnVector) array.child);
StringBuilder buffer = new StringBuilder();
map.stringifyValue(buffer, 0);
assertEquals("[{\"key\": \"key10\", \"value\": 10.0}, {\"key\": \"key20\", \"value\": 20.0}]", buffer.toString());
buffer = new StringBuilder();
map.stringifyValue(buffer, 1);
assertEquals("[{\"key\": \"key101\", \"value\": 101.0}, {\"key\": \"key202\", \"value\": 202.0}]", buffer.toString());
}
@Test
public void test_putRowToBatch_primitive_map() throws Exception {
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("testRecord").namespace("any.data").fields();
builder.name("map").type().map().values().longType().noDefault();
Schema testSchema = builder.endRecord();
Map<String, Long> mapData1 = new TreeMap<String, Long>() {{
put("key10", 100L);
put("key20", 200L);
}};
GenericData.Record row = new GenericData.Record(testSchema);
row.put("map", mapData1);
TypeDescription orcSchema = OrcUtils.getOrcField(testSchema.getField("map").schema());
VectorizedRowBatch batch = orcSchema.createRowBatch();
batch.ensureSize(2);
MutableInt vectorOffset = new MutableInt(0);
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 0, testSchema.getField("map").schema(), row.get("map"));
Map<String, Long> mapData2 = new TreeMap<String, Long>() {{
put("key1000", 1000L);
put("key2000", 2000L);
}};
OrcUtils.putToRowBatch(batch.cols[0], vectorOffset, 1, testSchema.getField("map").schema(), mapData2);
MapColumnVector map = ((MapColumnVector) batch.cols[0]);
StringBuilder buffer = new StringBuilder();
map.stringifyValue(buffer, 0);
assertEquals("[{\"key\": \"key10\", \"value\": 100}, {\"key\": \"key20\", \"value\": 200}]", buffer.toString());
buffer = new StringBuilder();
map.stringifyValue(buffer, 1);
assertEquals("[{\"key\": \"key1000\", \"value\": 1000}, {\"key\": \"key2000\", \"value\": 2000}]", buffer.toString());
}
@Test
public void test_getHiveTypeFromAvroType_primitive() throws Exception {
// Expected ORC types
String[] expectedTypes = {
"INT",
"BIGINT",
"BOOLEAN",
"FLOAT",
"DOUBLE",
"BINARY",
"STRING",
};
Schema testSchema = buildPrimitiveAvroSchema();
List<Schema.Field> fields = testSchema.getFields();
for (int i = 0; i < fields.size(); i++) {
assertEquals(expectedTypes[i], OrcUtils.getHiveTypeFromAvroType(fields.get(i).schema()));
}
}
@Test
public void test_getHiveTypeFromAvroType_complex() throws Exception {
// Expected ORC types
String[] expectedTypes = {
"INT",
"MAP<STRING, DOUBLE>",
"STRING",
"UNIONTYPE<BIGINT, FLOAT>",
"ARRAY<INT>"
};
Schema testSchema = buildComplexAvroSchema();
List<Schema.Field> fields = testSchema.getFields();
for (int i = 0; i < fields.size(); i++) {
assertEquals(expectedTypes[i], OrcUtils.getHiveTypeFromAvroType(fields.get(i).schema()));
}
assertEquals("STRUCT<myInt:INT, myMap:MAP<STRING, DOUBLE>, myEnum:STRING, myLongOrFloat:UNIONTYPE<BIGINT, FLOAT>, myIntList:ARRAY<INT>>",
OrcUtils.getHiveTypeFromAvroType(testSchema));
}
@Test
public void test_generateHiveDDL_primitive() throws Exception {
Schema avroSchema = buildPrimitiveAvroSchema();
String ddl = OrcUtils.generateHiveDDL(avroSchema, "myHiveTable");
assertEquals("CREATE EXTERNAL TABLE IF NOT EXISTS myHiveTable (int INT, long BIGINT, boolean BOOLEAN, float FLOAT, double DOUBLE, bytes BINARY, string STRING)"
+ " STORED AS ORC", ddl);
}
@Test
public void test_generateHiveDDL_complex() throws Exception {
Schema avroSchema = buildComplexAvroSchema();
String ddl = OrcUtils.generateHiveDDL(avroSchema, "myHiveTable");
assertEquals("CREATE EXTERNAL TABLE IF NOT EXISTS myHiveTable "
+ "(myInt INT, myMap MAP<STRING, DOUBLE>, myEnum STRING, myLongOrFloat UNIONTYPE<BIGINT, FLOAT>, myIntList ARRAY<INT>)"
+ " STORED AS ORC", ddl);
}
//////////////////
// Helper methods
//////////////////
public static Schema buildPrimitiveAvroSchema() {
// Build a fake Avro record with all primitive types
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("test.record").namespace("any.data").fields();
builder.name("int").type().intType().noDefault();
builder.name("long").type().longType().longDefault(1L);
builder.name("boolean").type().booleanType().booleanDefault(true);
builder.name("float").type().floatType().floatDefault(0.0f);
builder.name("double").type().doubleType().doubleDefault(0.0);
builder.name("bytes").type().bytesType().noDefault();
builder.name("string").type().stringType().stringDefault("default");
return builder.endRecord();
}
public static GenericData.Record buildPrimitiveAvroRecord(int i, long l, boolean b, float f, double d, ByteBuffer bytes, String string) {
Schema schema = buildPrimitiveAvroSchema();
GenericData.Record row = new GenericData.Record(schema);
row.put("int", i);
row.put("long", l);
row.put("boolean", b);
row.put("float", f);
row.put("double", d);
row.put("bytes", bytes);
row.put("string", string);
return row;
}
public static TypeDescription buildPrimitiveOrcSchema() {
return TypeDescription.createStruct()
.addField("int", TypeDescription.createInt())
.addField("long", TypeDescription.createLong())
.addField("boolean", TypeDescription.createBoolean())
.addField("float", TypeDescription.createFloat())
.addField("double", TypeDescription.createDouble())
.addField("bytes", TypeDescription.createBinary())
.addField("string", TypeDescription.createString());
}
public static Schema buildComplexAvroSchema() {
// Build a fake Avro record with nested types
final SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.record("complex.record").namespace("any.data").fields();
builder.name("myInt").type().unionOf().nullType().and().intType().endUnion().nullDefault();
builder.name("myMap").type().map().values().doubleType().noDefault();
builder.name("myEnum").type().enumeration("myEnum").symbols("ABC", "DEF", "XYZ").enumDefault("ABC");
builder.name("myLongOrFloat").type().unionOf().longType().and().floatType().endUnion().noDefault();
builder.name("myIntList").type().array().items().intType().noDefault();
return builder.endRecord();
}
public static GenericData.Record buildComplexAvroRecord(Integer i, Map<String, Double> m, String e, Object unionVal, List<Integer> intArray) {
Schema schema = buildComplexAvroSchema();
GenericData.Record row = new GenericData.Record(schema);
row.put("myInt", i);
row.put("myMap", m);
row.put("myEnum", e);
row.put("myLongOrFloat", unionVal);
row.put("myIntList", intArray);
return row;
}
}