mirror of https://github.com/apache/nifi.git
NIFI-3861: Fixed AvroReader nullable logical types issue
- AvroReader did not convert logical types if those are defined with union - Consolidated createSchema method in AvroSchemaRegistry and AvroTypeUtil as both has identical implementation and mai ntaining both would be error-prone This closes #1779.
This commit is contained in:
parent
b6bdc4a0a8
commit
72de1cbdef
|
@ -18,7 +18,6 @@
|
|||
package org.apache.nifi.avro;
|
||||
|
||||
import org.apache.avro.LogicalType;
|
||||
import org.apache.avro.LogicalTypes;
|
||||
import org.apache.avro.Schema;
|
||||
import org.apache.avro.Schema.Field;
|
||||
import org.apache.avro.Schema.Type;
|
||||
|
@ -43,17 +42,25 @@ import java.nio.ByteBuffer;
|
|||
import java.time.Duration;
|
||||
import java.time.temporal.ChronoUnit;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.Date;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Optional;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
import java.util.function.Function;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
public class AvroTypeUtil {
|
||||
public static final String AVRO_SCHEMA_FORMAT = "avro";
|
||||
|
||||
private static final String LOGICAL_TYPE_DATE = "date";
|
||||
private static final String LOGICAL_TYPE_TIME_MILLIS = "time-millis";
|
||||
private static final String LOGICAL_TYPE_TIME_MICROS = "time-micros";
|
||||
private static final String LOGICAL_TYPE_TIMESTAMP_MILLIS = "timestamp-millis";
|
||||
private static final String LOGICAL_TYPE_TIMESTAMP_MICROS = "timestamp-micros";
|
||||
|
||||
public static Schema extractAvroSchema(final RecordSchema recordSchema) throws SchemaNotFoundException {
|
||||
if (recordSchema == null) {
|
||||
throw new IllegalArgumentException("RecordSchema cannot be null");
|
||||
|
@ -78,16 +85,36 @@ public class AvroTypeUtil {
|
|||
return new Schema.Parser().parse(text);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a DataType for the given Avro Schema
|
||||
*
|
||||
* @param avroSchema the Avro Schema to convert
|
||||
* @return a Data Type that corresponds to the given Avro Schema
|
||||
*/
|
||||
public static DataType determineDataType(final Schema avroSchema) {
|
||||
final Type avroType = avroSchema.getType();
|
||||
|
||||
final LogicalType logicalType = avroSchema.getLogicalType();
|
||||
if (logicalType != null) {
|
||||
final String logicalTypeName = logicalType.getName();
|
||||
switch (logicalTypeName) {
|
||||
case LOGICAL_TYPE_DATE:
|
||||
return RecordFieldType.DATE.getDataType();
|
||||
case LOGICAL_TYPE_TIME_MILLIS:
|
||||
case LOGICAL_TYPE_TIME_MICROS:
|
||||
return RecordFieldType.TIME.getDataType();
|
||||
case LOGICAL_TYPE_TIMESTAMP_MILLIS:
|
||||
case LOGICAL_TYPE_TIMESTAMP_MICROS:
|
||||
return RecordFieldType.TIMESTAMP.getDataType();
|
||||
}
|
||||
}
|
||||
|
||||
switch (avroType) {
|
||||
case ARRAY:
|
||||
return RecordFieldType.ARRAY.getArrayDataType(determineDataType(avroSchema.getElementType()));
|
||||
case BYTES:
|
||||
case FIXED:
|
||||
return RecordFieldType.ARRAY.getArrayDataType(RecordFieldType.BYTE.getDataType());
|
||||
case ARRAY:
|
||||
final DataType elementType = determineDataType(avroSchema.getElementType());
|
||||
return RecordFieldType.ARRAY.getArrayDataType(elementType);
|
||||
case BOOLEAN:
|
||||
return RecordFieldType.BOOLEAN.getDataType();
|
||||
case DOUBLE:
|
||||
|
@ -97,36 +124,10 @@ public class AvroTypeUtil {
|
|||
return RecordFieldType.STRING.getDataType();
|
||||
case FLOAT:
|
||||
return RecordFieldType.FLOAT.getDataType();
|
||||
case INT: {
|
||||
final LogicalType logicalType = avroSchema.getLogicalType();
|
||||
if (logicalType == null) {
|
||||
case INT:
|
||||
return RecordFieldType.INT.getDataType();
|
||||
}
|
||||
|
||||
if (LogicalTypes.date().getName().equals(logicalType.getName())) {
|
||||
return RecordFieldType.DATE.getDataType();
|
||||
} else if (LogicalTypes.timeMillis().getName().equals(logicalType.getName())) {
|
||||
return RecordFieldType.TIME.getDataType();
|
||||
}
|
||||
|
||||
return RecordFieldType.INT.getDataType();
|
||||
}
|
||||
case LONG: {
|
||||
final LogicalType logicalType = avroSchema.getLogicalType();
|
||||
if (logicalType == null) {
|
||||
case LONG:
|
||||
return RecordFieldType.LONG.getDataType();
|
||||
}
|
||||
|
||||
if (LogicalTypes.timestampMillis().getName().equals(logicalType.getName())) {
|
||||
return RecordFieldType.TIMESTAMP.getDataType();
|
||||
} else if (LogicalTypes.timestampMicros().getName().equals(logicalType.getName())) {
|
||||
return RecordFieldType.TIMESTAMP.getDataType();
|
||||
} else if (LogicalTypes.timeMicros().getName().equals(logicalType.getName())) {
|
||||
return RecordFieldType.TIME.getDataType();
|
||||
}
|
||||
|
||||
return RecordFieldType.LONG.getDataType();
|
||||
}
|
||||
case RECORD: {
|
||||
final List<Field> avroFields = avroSchema.getFields();
|
||||
final List<RecordField> recordFields = new ArrayList<>(avroFields.size());
|
||||
|
@ -135,6 +136,7 @@ public class AvroTypeUtil {
|
|||
final String fieldName = field.name();
|
||||
final Schema fieldSchema = field.schema();
|
||||
final DataType fieldType = determineDataType(fieldSchema);
|
||||
|
||||
recordFields.add(new RecordField(fieldName, fieldType, field.defaultVal(), field.aliases()));
|
||||
}
|
||||
|
||||
|
@ -148,9 +150,7 @@ public class AvroTypeUtil {
|
|||
final DataType valueType = determineDataType(valueSchema);
|
||||
return RecordFieldType.MAP.getMapDataType(valueType);
|
||||
case UNION: {
|
||||
final List<Schema> nonNullSubSchemas = avroSchema.getTypes().stream()
|
||||
.filter(s -> s.getType() != Type.NULL)
|
||||
.collect(Collectors.toList());
|
||||
final List<Schema> nonNullSubSchemas = getNonNullSubSchemas(avroSchema);
|
||||
|
||||
if (nonNullSubSchemas.size() == 1) {
|
||||
return determineDataType(nonNullSubSchemas.get(0));
|
||||
|
@ -169,11 +169,37 @@ public class AvroTypeUtil {
|
|||
return null;
|
||||
}
|
||||
|
||||
private static List<Schema> getNonNullSubSchemas(Schema avroSchema) {
|
||||
List<Schema> unionFieldSchemas = avroSchema.getTypes();
|
||||
if (unionFieldSchemas == null) {
|
||||
return Collections.emptyList();
|
||||
}
|
||||
return unionFieldSchemas.stream()
|
||||
.filter(s -> s.getType() != Type.NULL)
|
||||
.collect(Collectors.toList());
|
||||
}
|
||||
|
||||
public static RecordSchema createSchema(final Schema avroSchema) {
|
||||
if (avroSchema == null) {
|
||||
throw new IllegalArgumentException("Avro Schema cannot be null");
|
||||
}
|
||||
|
||||
return createSchema(avroSchema, avroSchema.toString(), SchemaIdentifier.EMPTY);
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts an Avro Schema to a RecordSchema
|
||||
*
|
||||
* @param avroSchema the Avro Schema to convert
|
||||
* @param schemaText the textual representation of the schema
|
||||
* @param schemaId the identifier of the schema
|
||||
* @return the Corresponding Record Schema
|
||||
*/
|
||||
public static RecordSchema createSchema(final Schema avroSchema, final String schemaText, final SchemaIdentifier schemaId) {
|
||||
if (avroSchema == null) {
|
||||
throw new IllegalArgumentException("Avro Schema cannot be null");
|
||||
}
|
||||
|
||||
final List<RecordField> recordFields = new ArrayList<>(avroSchema.getFields().size());
|
||||
for (final Field field : avroSchema.getFields()) {
|
||||
final String fieldName = field.name();
|
||||
|
@ -182,7 +208,7 @@ public class AvroTypeUtil {
|
|||
recordFields.add(new RecordField(fieldName, dataType, field.defaultVal(), field.aliases()));
|
||||
}
|
||||
|
||||
final RecordSchema recordSchema = new SimpleRecordSchema(recordFields, avroSchema.toString(), AVRO_SCHEMA_FORMAT, SchemaIdentifier.EMPTY);
|
||||
final RecordSchema recordSchema = new SimpleRecordSchema(recordFields, schemaText, AVRO_SCHEMA_FORMAT, schemaId);
|
||||
return recordSchema;
|
||||
}
|
||||
|
||||
|
@ -227,7 +253,11 @@ public class AvroTypeUtil {
|
|||
return rec;
|
||||
}
|
||||
|
||||
private static Object convertToAvroObject(final Object rawValue, final Schema fieldSchema, final String fieldName) throws IOException {
|
||||
/**
|
||||
* Convert a raw value to an Avro object to serialize in Avro type system.
|
||||
* The counter-part method which reads an Avro object back to a raw value is {@link #normalizeValue(Object, Schema)}.
|
||||
*/
|
||||
private static Object convertToAvroObject(final Object rawValue, final Schema fieldSchema, final String fieldName) {
|
||||
if (rawValue == null) {
|
||||
return null;
|
||||
}
|
||||
|
@ -239,13 +269,13 @@ public class AvroTypeUtil {
|
|||
return DataTypeUtils.toInteger(rawValue, fieldName);
|
||||
}
|
||||
|
||||
if (LogicalTypes.date().getName().equals(logicalType.getName())) {
|
||||
if (LOGICAL_TYPE_DATE.equals(logicalType.getName())) {
|
||||
final long longValue = DataTypeUtils.toLong(rawValue, fieldName);
|
||||
final Date date = new Date(longValue);
|
||||
final Duration duration = Duration.between(new Date(0L).toInstant(), date.toInstant());
|
||||
final long days = duration.toDays();
|
||||
return (int) days;
|
||||
} else if (LogicalTypes.timeMillis().getName().equals(logicalType.getName())) {
|
||||
} else if (LOGICAL_TYPE_TIME_MILLIS.equals(logicalType.getName())) {
|
||||
final long longValue = DataTypeUtils.toLong(rawValue, fieldName);
|
||||
final Date date = new Date(longValue);
|
||||
final Duration duration = Duration.between(date.toInstant().truncatedTo(ChronoUnit.DAYS), date.toInstant());
|
||||
|
@ -261,14 +291,14 @@ public class AvroTypeUtil {
|
|||
return DataTypeUtils.toLong(rawValue, fieldName);
|
||||
}
|
||||
|
||||
if (LogicalTypes.timeMicros().getName().equals(logicalType.getName())) {
|
||||
if (LOGICAL_TYPE_TIME_MICROS.equals(logicalType.getName())) {
|
||||
final long longValue = DataTypeUtils.toLong(rawValue, fieldName);
|
||||
final Date date = new Date(longValue);
|
||||
final Duration duration = Duration.between(date.toInstant().truncatedTo(ChronoUnit.DAYS), date.toInstant());
|
||||
return duration.toMillis() * 1000L;
|
||||
} else if (LogicalTypes.timestampMillis().getName().equals(logicalType.getName())) {
|
||||
} else if (LOGICAL_TYPE_TIMESTAMP_MILLIS.equals(logicalType.getName())) {
|
||||
return DataTypeUtils.toLong(rawValue, fieldName);
|
||||
} else if (LogicalTypes.timestampMicros().getName().equals(logicalType.getName())) {
|
||||
} else if (LOGICAL_TYPE_TIMESTAMP_MICROS.equals(logicalType.getName())) {
|
||||
return DataTypeUtils.toLong(rawValue, fieldName) * 1000L;
|
||||
}
|
||||
|
||||
|
@ -319,19 +349,17 @@ public class AvroTypeUtil {
|
|||
}
|
||||
return avroRecord;
|
||||
case UNION:
|
||||
List<Schema> unionFieldSchemas = fieldSchema.getTypes();
|
||||
if (unionFieldSchemas != null) {
|
||||
// Ignore null types in union
|
||||
final List<Schema> nonNullFieldSchemas = unionFieldSchemas.stream()
|
||||
.filter(s -> s.getType() != Type.NULL)
|
||||
.collect(Collectors.toList());
|
||||
final List<Schema> nonNullFieldSchemas = getNonNullSubSchemas(fieldSchema);
|
||||
|
||||
// If at least one non-null type exists, find the first compatible type
|
||||
if (nonNullFieldSchemas.size() >= 1) {
|
||||
for (final Schema nonNullFieldSchema : nonNullFieldSchemas) {
|
||||
final Object avroObject = convertToAvroObject(rawValue, nonNullFieldSchema, fieldName);
|
||||
final DataType desiredDataType = AvroTypeUtil.determineDataType(nonNullFieldSchema);
|
||||
if (DataTypeUtils.isCompatibleDataType(avroObject, desiredDataType)) {
|
||||
if (DataTypeUtils.isCompatibleDataType(avroObject, desiredDataType)
|
||||
// For logical types those store with different type (e.g. BigDecimal as ByteBuffer), check compatibility using the original rawValue
|
||||
|| (nonNullFieldSchema.getLogicalType() != null && DataTypeUtils.isCompatibleDataType(rawValue, desiredDataType))) {
|
||||
return avroObject;
|
||||
}
|
||||
}
|
||||
|
@ -339,8 +367,7 @@ public class AvroTypeUtil {
|
|||
throw new IllegalTypeConversionException("Cannot convert value " + rawValue + " of type " + rawValue.getClass()
|
||||
+ " because no compatible types exist in the UNION");
|
||||
}
|
||||
}
|
||||
return null;
|
||||
return convertUnionFieldValue(rawValue, fieldSchema, schema -> convertToAvroObject(rawValue, schema, fieldName));
|
||||
case ARRAY:
|
||||
final Object[] objectArray = (Object[]) rawValue;
|
||||
final List<Object> list = new ArrayList<>(objectArray.length);
|
||||
|
@ -399,6 +426,39 @@ public class AvroTypeUtil {
|
|||
return values;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert value of a nullable union field.
|
||||
* @param originalValue original value
|
||||
* @param fieldSchema the union field schema
|
||||
* @param conversion the conversion function which takes a non-null field schema within the union field and returns a converted value
|
||||
* @return a converted value
|
||||
*/
|
||||
private static Object convertUnionFieldValue(Object originalValue, Schema fieldSchema, Function<Schema, Object> conversion) {
|
||||
// Ignore null types in union
|
||||
final List<Schema> nonNullFieldSchemas = getNonNullSubSchemas(fieldSchema);
|
||||
|
||||
// If at least one non-null type exists, find the first compatible type
|
||||
if (nonNullFieldSchemas.size() >= 1) {
|
||||
for (final Schema nonNullFieldSchema : nonNullFieldSchemas) {
|
||||
final Object convertedValue = conversion.apply(nonNullFieldSchema);
|
||||
final DataType desiredDataType = AvroTypeUtil.determineDataType(nonNullFieldSchema);
|
||||
if (DataTypeUtils.isCompatibleDataType(convertedValue, desiredDataType)
|
||||
// For logical types those store with different type (e.g. BigDecimal as ByteBuffer), check compatibility using the original rawValue
|
||||
|| (nonNullFieldSchema.getLogicalType() != null && DataTypeUtils.isCompatibleDataType(originalValue, desiredDataType))) {
|
||||
return convertedValue;
|
||||
}
|
||||
}
|
||||
|
||||
throw new IllegalTypeConversionException("Cannot convert value " + originalValue + " of type " + originalValue.getClass()
|
||||
+ " because no compatible types exist in the UNION");
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert an Avro object to a normal Java objects for further processing.
|
||||
* The counter-part method which convert a raw value to an Avro object is {@link #convertToAvroObject(Object, Schema, String)}
|
||||
*/
|
||||
private static Object normalizeValue(final Object value, final Schema avroSchema) {
|
||||
if (value == null) {
|
||||
return null;
|
||||
|
@ -412,10 +472,10 @@ public class AvroTypeUtil {
|
|||
}
|
||||
|
||||
final String logicalName = logicalType.getName();
|
||||
if (LogicalTypes.date().getName().equals(logicalName)) {
|
||||
if (LOGICAL_TYPE_DATE.equals(logicalName)) {
|
||||
// date logical name means that the value is number of days since Jan 1, 1970
|
||||
return new java.sql.Date(TimeUnit.DAYS.toMillis((int) value));
|
||||
} else if (LogicalTypes.timeMillis().equals(logicalName)) {
|
||||
} else if (LOGICAL_TYPE_TIMESTAMP_MILLIS.equals(logicalName)) {
|
||||
// time-millis logical name means that the value is number of milliseconds since midnight.
|
||||
return new java.sql.Time((int) value);
|
||||
}
|
||||
|
@ -429,11 +489,11 @@ public class AvroTypeUtil {
|
|||
}
|
||||
|
||||
final String logicalName = logicalType.getName();
|
||||
if (LogicalTypes.timeMicros().getName().equals(logicalName)) {
|
||||
if (LOGICAL_TYPE_TIME_MICROS.equals(logicalName)) {
|
||||
return new java.sql.Time(TimeUnit.MICROSECONDS.toMillis((long) value));
|
||||
} else if (LogicalTypes.timestampMillis().getName().equals(logicalName)) {
|
||||
} else if (LOGICAL_TYPE_TIMESTAMP_MILLIS.equals(logicalName)) {
|
||||
return new java.sql.Timestamp((long) value);
|
||||
} else if (LogicalTypes.timestampMicros().getName().equals(logicalName)) {
|
||||
} else if (LOGICAL_TYPE_TIMESTAMP_MICROS.equals(logicalName)) {
|
||||
return new java.sql.Timestamp(TimeUnit.MICROSECONDS.toMillis((long) value));
|
||||
}
|
||||
break;
|
||||
|
@ -443,7 +503,7 @@ public class AvroTypeUtil {
|
|||
final GenericData.Record avroRecord = (GenericData.Record) value;
|
||||
return normalizeValue(value, avroRecord.getSchema());
|
||||
}
|
||||
break;
|
||||
return convertUnionFieldValue(value, avroSchema, schema -> normalizeValue(value, schema));
|
||||
case RECORD:
|
||||
final GenericData.Record record = (GenericData.Record) value;
|
||||
final Schema recordSchema = record.getSchema();
|
||||
|
|
|
@ -35,8 +35,8 @@
|
|||
<artifactId>nifi-record</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.avro</groupId>
|
||||
<artifactId>avro</artifactId>
|
||||
<groupId>org.apache.nifi</groupId>
|
||||
<artifactId>nifi-avro-record-utils</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.nifi</groupId>
|
||||
|
|
|
@ -17,34 +17,26 @@
|
|||
package org.apache.nifi.schemaregistry.services;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.EnumSet;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Set;
|
||||
import java.util.concurrent.ConcurrentHashMap;
|
||||
import java.util.concurrent.ConcurrentMap;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
import org.apache.avro.LogicalType;
|
||||
import org.apache.avro.Schema;
|
||||
import org.apache.avro.Schema.Field;
|
||||
import org.apache.avro.Schema.Type;
|
||||
import org.apache.nifi.annotation.documentation.CapabilityDescription;
|
||||
import org.apache.nifi.annotation.documentation.Tags;
|
||||
import org.apache.nifi.annotation.lifecycle.OnDisabled;
|
||||
import org.apache.nifi.annotation.lifecycle.OnEnabled;
|
||||
import org.apache.nifi.avro.AvroTypeUtil;
|
||||
import org.apache.nifi.components.PropertyDescriptor;
|
||||
import org.apache.nifi.controller.AbstractControllerService;
|
||||
import org.apache.nifi.controller.ConfigurationContext;
|
||||
import org.apache.nifi.reporting.InitializationException;
|
||||
import org.apache.nifi.schema.access.SchemaField;
|
||||
import org.apache.nifi.schema.access.SchemaNotFoundException;
|
||||
import org.apache.nifi.serialization.SimpleRecordSchema;
|
||||
import org.apache.nifi.serialization.record.DataType;
|
||||
import org.apache.nifi.serialization.record.RecordField;
|
||||
import org.apache.nifi.serialization.record.RecordFieldType;
|
||||
import org.apache.nifi.serialization.record.RecordSchema;
|
||||
import org.apache.nifi.serialization.record.SchemaIdentifier;
|
||||
|
||||
|
@ -57,12 +49,6 @@ public class AvroSchemaRegistry extends AbstractControllerService implements Sch
|
|||
private final Map<String, String> schemaNameToSchemaMap;
|
||||
private final ConcurrentMap<String, RecordSchema> recordSchemas = new ConcurrentHashMap<>();
|
||||
|
||||
private static final String LOGICAL_TYPE_DATE = "date";
|
||||
private static final String LOGICAL_TYPE_TIME_MILLIS = "time-millis";
|
||||
private static final String LOGICAL_TYPE_TIME_MICROS = "time-micros";
|
||||
private static final String LOGICAL_TYPE_TIMESTAMP_MILLIS = "timestamp-millis";
|
||||
private static final String LOGICAL_TYPE_TIMESTAMP_MICROS = "timestamp-micros";
|
||||
|
||||
public AvroSchemaRegistry() {
|
||||
this.schemaNameToSchemaMap = new HashMap<>();
|
||||
}
|
||||
|
@ -74,7 +60,8 @@ public class AvroSchemaRegistry extends AbstractControllerService implements Sch
|
|||
} else {
|
||||
try {
|
||||
final Schema avroSchema = new Schema.Parser().parse(newValue);
|
||||
final RecordSchema recordSchema = createRecordSchema(avroSchema, newValue, descriptor.getName());
|
||||
final SchemaIdentifier schemaId = SchemaIdentifier.ofName(descriptor.getName());
|
||||
final RecordSchema recordSchema = AvroTypeUtil.createSchema(avroSchema, newValue, schemaId);
|
||||
recordSchemas.put(descriptor.getName(), recordSchema);
|
||||
} catch (final Exception e) {
|
||||
// not a problem - the service won't be valid and the validation message will indicate what is wrong.
|
||||
|
@ -137,113 +124,6 @@ public class AvroSchemaRegistry extends AbstractControllerService implements Sch
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Converts an Avro Schema to a RecordSchema
|
||||
*
|
||||
* @param avroSchema the Avro Schema to convert
|
||||
* @param text the textual representation of the schema
|
||||
* @param schemaName the name of the schema
|
||||
* @return the Corresponding Record Schema
|
||||
*/
|
||||
private RecordSchema createRecordSchema(final Schema avroSchema, final String text, final String schemaName) {
|
||||
final List<RecordField> recordFields = new ArrayList<>(avroSchema.getFields().size());
|
||||
for (final Field field : avroSchema.getFields()) {
|
||||
final String fieldName = field.name();
|
||||
final DataType dataType = determineDataType(field.schema());
|
||||
|
||||
recordFields.add(new RecordField(fieldName, dataType, field.defaultVal(), field.aliases()));
|
||||
}
|
||||
|
||||
final RecordSchema recordSchema = new SimpleRecordSchema(recordFields, text, "avro", SchemaIdentifier.ofName(schemaName));
|
||||
return recordSchema;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a DataType for the given Avro Schema
|
||||
*
|
||||
* @param avroSchema the Avro Schema to convert
|
||||
* @return a Data Type that corresponds to the given Avro Schema
|
||||
*/
|
||||
private DataType determineDataType(final Schema avroSchema) {
|
||||
final Type avroType = avroSchema.getType();
|
||||
|
||||
final LogicalType logicalType = avroSchema.getLogicalType();
|
||||
if (logicalType != null) {
|
||||
final String logicalTypeName = logicalType.getName();
|
||||
switch (logicalTypeName) {
|
||||
case LOGICAL_TYPE_DATE:
|
||||
return RecordFieldType.DATE.getDataType();
|
||||
case LOGICAL_TYPE_TIME_MILLIS:
|
||||
case LOGICAL_TYPE_TIME_MICROS:
|
||||
return RecordFieldType.TIME.getDataType();
|
||||
case LOGICAL_TYPE_TIMESTAMP_MILLIS:
|
||||
case LOGICAL_TYPE_TIMESTAMP_MICROS:
|
||||
return RecordFieldType.TIMESTAMP.getDataType();
|
||||
}
|
||||
}
|
||||
|
||||
switch (avroType) {
|
||||
case ARRAY:
|
||||
return RecordFieldType.ARRAY.getArrayDataType(determineDataType(avroSchema.getElementType()));
|
||||
case BYTES:
|
||||
case FIXED:
|
||||
return RecordFieldType.ARRAY.getArrayDataType(RecordFieldType.BYTE.getDataType());
|
||||
case BOOLEAN:
|
||||
return RecordFieldType.BOOLEAN.getDataType();
|
||||
case DOUBLE:
|
||||
return RecordFieldType.DOUBLE.getDataType();
|
||||
case ENUM:
|
||||
case STRING:
|
||||
return RecordFieldType.STRING.getDataType();
|
||||
case FLOAT:
|
||||
return RecordFieldType.FLOAT.getDataType();
|
||||
case INT:
|
||||
return RecordFieldType.INT.getDataType();
|
||||
case LONG:
|
||||
return RecordFieldType.LONG.getDataType();
|
||||
case RECORD: {
|
||||
final List<Field> avroFields = avroSchema.getFields();
|
||||
final List<RecordField> recordFields = new ArrayList<>(avroFields.size());
|
||||
|
||||
for (final Field field : avroFields) {
|
||||
final String fieldName = field.name();
|
||||
final Schema fieldSchema = field.schema();
|
||||
final DataType fieldType = determineDataType(fieldSchema);
|
||||
|
||||
recordFields.add(new RecordField(fieldName, fieldType, field.defaultVal(), field.aliases()));
|
||||
}
|
||||
|
||||
final RecordSchema recordSchema = new SimpleRecordSchema(recordFields, avroSchema.toString(), "avro", SchemaIdentifier.EMPTY);
|
||||
return RecordFieldType.RECORD.getRecordDataType(recordSchema);
|
||||
}
|
||||
case NULL:
|
||||
return RecordFieldType.STRING.getDataType();
|
||||
case MAP:
|
||||
final Schema valueSchema = avroSchema.getValueType();
|
||||
final DataType valueType = determineDataType(valueSchema);
|
||||
return RecordFieldType.MAP.getMapDataType(valueType);
|
||||
case UNION: {
|
||||
final List<Schema> nonNullSubSchemas = avroSchema.getTypes().stream()
|
||||
.filter(s -> s.getType() != Type.NULL)
|
||||
.collect(Collectors.toList());
|
||||
|
||||
if (nonNullSubSchemas.size() == 1) {
|
||||
return determineDataType(nonNullSubSchemas.get(0));
|
||||
}
|
||||
|
||||
final List<DataType> possibleChildTypes = new ArrayList<>(nonNullSubSchemas.size());
|
||||
for (final Schema subSchema : nonNullSubSchemas) {
|
||||
final DataType childDataType = determineDataType(subSchema);
|
||||
possibleChildTypes.add(childDataType);
|
||||
}
|
||||
|
||||
return RecordFieldType.CHOICE.getChoiceDataType(possibleChildTypes);
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Set<SchemaField> getSuppliedSchemaFields() {
|
||||
return schemaFields;
|
||||
|
|
|
@ -94,6 +94,7 @@
|
|||
<excludes combine.children="append">
|
||||
<exclude>src/test/resources/avro/datatypes.avsc</exclude>
|
||||
<exclude>src/test/resources/avro/logical-types.avsc</exclude>
|
||||
<exclude>src/test/resources/avro/logical-types-nullable.avsc</exclude>
|
||||
<exclude>src/test/resources/csv/extra-white-space.csv</exclude>
|
||||
<exclude>src/test/resources/csv/multi-bank-account.csv</exclude>
|
||||
<exclude>src/test/resources/csv/single-bank-account.csv</exclude>
|
||||
|
|
|
@ -62,7 +62,16 @@ public class TestAvroReaderWithEmbeddedSchema {
|
|||
@Test
|
||||
public void testLogicalTypes() throws IOException, ParseException, MalformedRecordException, SchemaNotFoundException {
|
||||
final Schema schema = new Schema.Parser().parse(new File("src/test/resources/avro/logical-types.avsc"));
|
||||
testLogicalTypes(schema);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testNullableLogicalTypes() throws IOException, ParseException, MalformedRecordException, SchemaNotFoundException {
|
||||
final Schema schema = new Schema.Parser().parse(new File("src/test/resources/avro/logical-types-nullable.avsc"));
|
||||
testLogicalTypes(schema);
|
||||
}
|
||||
|
||||
private void testLogicalTypes(Schema schema) throws ParseException, IOException, MalformedRecordException {
|
||||
final ByteArrayOutputStream baos = new ByteArrayOutputStream();
|
||||
|
||||
final String expectedTime = "2017-04-04 14:20:33.000";
|
||||
|
@ -80,7 +89,7 @@ public class TestAvroReaderWithEmbeddedSchema {
|
|||
final DataFileWriter<GenericRecord> writer = dataFileWriter.create(schema, baos)) {
|
||||
|
||||
final GenericRecord record = new GenericData.Record(schema);
|
||||
record.put("timeMillis", millisSinceMidnight);
|
||||
record.put("timeMillis", (int) millisSinceMidnight);
|
||||
record.put("timeMicros", millisSinceMidnight * 1000L);
|
||||
record.put("timestampMillis", timeLong);
|
||||
record.put("timestampMicros", timeLong * 1000L);
|
||||
|
|
|
@ -0,0 +1,69 @@
|
|||
{
|
||||
"namespace": "nifi",
|
||||
"name": "data_types",
|
||||
"type": "record",
|
||||
"fields": [
|
||||
{
|
||||
"name": "timeMillis",
|
||||
"type": [
|
||||
"null",
|
||||
{
|
||||
"type": "int",
|
||||
"logicalType": "time-millis"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "timeMicros",
|
||||
"type": [
|
||||
"null",
|
||||
{
|
||||
"type": "long",
|
||||
"logicalType": "time-micros"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "timestampMillis",
|
||||
"type": [
|
||||
"null",
|
||||
{
|
||||
"type": "long",
|
||||
"logicalType": "timestamp-millis"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "timestampMicros",
|
||||
"type": [
|
||||
"null",
|
||||
{
|
||||
"type": "long",
|
||||
"logicalType": "timestamp-micros"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "date",
|
||||
"type": [
|
||||
"null",
|
||||
{
|
||||
"type": "int",
|
||||
"logicalType": "date"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "decimal",
|
||||
"type": [
|
||||
"null",
|
||||
{
|
||||
"type": "bytes",
|
||||
"logicalType": "decimal",
|
||||
"precision": 5,
|
||||
"scale": 2
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
Loading…
Reference in New Issue