NIFI-751 Add Processor To Convert Avro Formats

Implemented a new NiFi processor that allows avro records to be converted from one Avro schema
to another. This supports..
* Flattening records using . notation like "parent.id"
* Simple type conversions to String or base primitive types.
* Specifying field renames using dynamic properties.

Signed-off-by: joewitt <joewitt@apache.org>
This commit is contained in:
Alan Jackoway 2015-07-07 17:28:26 -04:00 committed by joewitt
parent 8bd20510ee
commit bb64e70e6f
6 changed files with 1219 additions and 0 deletions

View File

@ -0,0 +1,320 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.nifi.processors.kite;
import java.io.IOException;
import java.util.Collection;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
import org.apache.avro.Schema;
import org.apache.avro.Schema.Field;
import org.apache.avro.generic.GenericData.Record;
import org.apache.avro.generic.IndexedRecord;
import com.google.common.base.Preconditions;
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
/**
* Responsible for converting records of one Avro type to another. Supports
* syntax like "record.field" to unpack fields and will try to do simple type
* conversion.
*/
public class AvroRecordConverter {
private final Schema inputSchema;
private final Schema outputSchema;
// Store this from output field to input field so we can look up by output.
private final Map<String, String> fieldMapping;
/**
* @param inputSchema
* Schema of input record objects
* @param outputSchema
* Schema of output record objects
* @param fieldMapping
* Map from field name in input record to field name in output
* record.
*/
public AvroRecordConverter(Schema inputSchema, Schema outputSchema,
Map<String, String> fieldMapping) {
this.inputSchema = inputSchema;
this.outputSchema = outputSchema;
// Need to reverse this map.
this.fieldMapping = Maps
.newHashMapWithExpectedSize(fieldMapping.size());
for (Map.Entry<String, String> entry : fieldMapping.entrySet()) {
this.fieldMapping.put(entry.getValue(), entry.getKey());
}
}
/**
* @return Any fields in the output schema that are not mapped or are mapped
* by a non-existent input field.
*/
public Collection<String> getUnmappedFields() {
List<String> result = Lists.newArrayList();
for (Field f : outputSchema.getFields()) {
String fieldName = f.name();
if (fieldMapping.containsKey(fieldName)) {
fieldName = fieldMapping.get(fieldName);
}
Schema currentSchema = inputSchema;
while (fieldName.contains(".")) {
// Recurse down the schema to find the right field.
int dotIndex = fieldName.indexOf('.');
String entityName = fieldName.substring(0, dotIndex);
// Get the schema. In case we had an optional record, choose
// just the record.
currentSchema = getNonNullSchema(currentSchema);
if (currentSchema.getField(entityName) == null) {
// Tried to step into a schema that doesn't exist. Break out
// of the loop
break;
}
currentSchema = currentSchema.getField(entityName).schema();
fieldName = fieldName.substring(dotIndex + 1);
}
if (currentSchema == null
|| getNonNullSchema(currentSchema).getField(fieldName) == null) {
result.add(f.name());
}
}
return result;
}
/**
* Converts one record to another given a input and output schema plus
* explicit mappings for certain target fields.
*
* @param input
* Input record to convert conforming to the inputSchema this
* converter was created with.
* @return Record converted to the outputSchema this converter was created
* with.
* @throws AvroConversionException
* When schemas do not match or illegal conversions are
* attempted, such as when numeric data fails to parse.
*/
public Record convert(Record input) throws AvroConversionException {
Record result = new Record(outputSchema);
for (Field outputField : outputSchema.getFields()) {
// Default to matching by name
String inputFieldName = outputField.name();
if (fieldMapping.containsKey(outputField.name())) {
inputFieldName = fieldMapping.get(outputField.name());
}
IndexedRecord currentRecord = input;
Schema currentSchema = getNonNullSchema(inputSchema);
while (inputFieldName.contains(".")) {
// Recurse down the schema to find the right field.
int dotIndex = inputFieldName.indexOf('.');
String entityName = inputFieldName.substring(0, dotIndex);
// Get the record object
Object innerRecord = currentRecord.get(currentSchema.getField(
entityName).pos());
if (innerRecord == null) {
// Probably hit a null record here. Just break out of the
// loop so that null object will be passed to convertData
// below.
currentRecord = null;
break;
}
if (innerRecord != null
&& !(innerRecord instanceof IndexedRecord)) {
throw new AvroConversionException(inputFieldName
+ " stepped through a non-record");
}
currentRecord = (IndexedRecord) innerRecord;
// Get the schema. In case we had an optional record, choose
// just the record.
currentSchema = currentSchema.getField(entityName).schema();
currentSchema = getNonNullSchema(currentSchema);
inputFieldName = inputFieldName.substring(dotIndex + 1);
}
// Current should now be in the right place to read the record.
Field f = currentSchema.getField(inputFieldName);
if (currentRecord == null) {
// We may have stepped into a null union type and gotten a null
// result.
Schema s = null;
if (f != null) {
s = f.schema();
}
result.put(outputField.name(),
convertData(null, s, outputField.schema()));
} else {
result.put(
outputField.name(),
convertData(currentRecord.get(f.pos()), f.schema(),
outputField.schema()));
}
}
return result;
}
public Schema getInputSchema() {
return inputSchema;
}
public Schema getOutputSchema() {
return outputSchema;
}
/**
* Converts the data from one schema to another. If the types are the same,
* no change will be made, but simple conversions will be attempted for
* other types.
*
* @param content
* The data to convert, generally taken from a field in an input
* Record.
* @param inputSchema
* The schema of the content object
* @param outputSchema
* The schema to convert to.
* @return The content object, converted to the output schema.
* @throws AvroConversionException
* When conversion is impossible, either because the output type
* is not supported or because numeric data failed to parse.
*/
private Object convertData(Object content, Schema inputSchema,
Schema outputSchema) throws AvroConversionException {
if (content == null) {
// No conversion can happen here.
if (supportsNull(outputSchema)) {
return null;
}
throw new AvroConversionException("Output schema " + outputSchema
+ " does not support null");
}
Schema nonNillInput = getNonNullSchema(inputSchema);
Schema nonNillOutput = getNonNullSchema(outputSchema);
if (nonNillInput.getType().equals(nonNillOutput.getType())) {
return content;
} else {
if (nonNillOutput.getType() == Schema.Type.STRING) {
return content.toString();
}
// For the non-string cases of these, we will try to convert through
// string using Scanner to validate types. This means we could
// return questionable results when a String starts with a number
// but then contains other content
Scanner scanner = new Scanner(content.toString());
switch (nonNillOutput.getType()) {
case LONG:
if (scanner.hasNextLong()) {
return scanner.nextLong();
} else {
throw new AvroConversionException("Cannot convert "
+ content + " to long");
}
case INT:
if (scanner.hasNextInt()) {
return scanner.nextInt();
} else {
throw new AvroConversionException("Cannot convert "
+ content + " to int");
}
case DOUBLE:
if (scanner.hasNextDouble()) {
return scanner.nextDouble();
} else {
throw new AvroConversionException("Cannot convert "
+ content + " to double");
}
case FLOAT:
if (scanner.hasNextFloat()) {
return scanner.nextFloat();
} else {
throw new AvroConversionException("Cannot convert "
+ content + " to float");
}
default:
throw new AvroConversionException("Cannot convert to type "
+ nonNillOutput.getType());
}
}
}
/**
* If s is a union schema of some type with null, returns that type.
* Otherwise just return schema itself.
*
* Does not handle unions of schemas with anything except null and one type.
*
* @param s
* Schema to remove nillable from.
* @return The Schema of the non-null part of a the union, if the input was
* a union type. Otherwise returns the input schema.
*/
protected static Schema getNonNullSchema(Schema s) {
// Handle the case where s is a union type. Assert that this must be a
// union that only includes one non-null type.
if (s.getType() == Schema.Type.UNION) {
List<Schema> types = s.getTypes();
boolean foundOne = false;
Schema result = s;
for (Schema type : types) {
if (!type.getType().equals(Schema.Type.NULL)) {
Preconditions.checkArgument(foundOne == false,
"Cannot handle union of two non-null types");
foundOne = true;
result = type;
}
}
return result;
} else {
return s;
}
}
protected static boolean supportsNull(Schema s) {
if (s.getType() == Schema.Type.NULL) {
return true;
} else if (s.getType() == Schema.Type.UNION) {
for (Schema type : s.getTypes()) {
if (type.getType() == Schema.Type.NULL) {
return true;
}
}
}
return false;
}
/**
* Exception thrown when Avro conversion fails.
*/
public class AvroConversionException extends Exception {
public AvroConversionException(String string, IOException e) {
super(string, e);
}
public AvroConversionException(String string) {
super(string);
}
}
}

View File

@ -0,0 +1,339 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.nifi.processors.kite;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.regex.Pattern;
import org.apache.avro.Schema;
import org.apache.avro.file.CodecFactory;
import org.apache.avro.file.DataFileStream;
import org.apache.avro.file.DataFileWriter;
import org.apache.avro.generic.GenericData.Record;
import org.apache.avro.generic.GenericDatumReader;
import org.apache.hadoop.conf.Configuration;
import org.apache.nifi.annotation.behavior.DynamicProperty;
import org.apache.nifi.annotation.documentation.CapabilityDescription;
import org.apache.nifi.annotation.documentation.Tags;
import org.apache.nifi.components.PropertyDescriptor;
import org.apache.nifi.components.ValidationContext;
import org.apache.nifi.components.ValidationResult;
import org.apache.nifi.components.Validator;
import org.apache.nifi.flowfile.FlowFile;
import org.apache.nifi.processor.ProcessContext;
import org.apache.nifi.processor.ProcessSession;
import org.apache.nifi.processor.Relationship;
import org.apache.nifi.processor.exception.ProcessException;
import org.apache.nifi.processor.io.StreamCallback;
import org.apache.nifi.processors.kite.AvroRecordConverter.AvroConversionException;
import org.apache.nifi.util.LongHolder;
import org.kitesdk.data.DatasetException;
import org.kitesdk.data.DatasetIOException;
import org.kitesdk.data.SchemaNotFoundException;
import org.kitesdk.data.spi.DefaultConfiguration;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Lists;
@Tags({ "avro", "convert", "kite" })
@CapabilityDescription("Convert records from one Avro schema to another, including support for flattening and simple type conversions")
@DynamicProperty(name = "Field name from input schema",
value = "Field name for output schema",
description = "Explicit mappings from input schema to output schema, which supports renaming fields and stepping into nested records on the input schema using notation like parent.id")
public class ConvertAvroSchema extends AbstractKiteProcessor {
private static final Relationship SUCCESS = new Relationship.Builder()
.name("success")
.description("Avro content that converted successfully").build();
private static final Relationship FAILURE = new Relationship.Builder()
.name("failure").description("Avro content that failed to convert")
.build();
/**
* Makes sure the output schema is a valid output schema and that all its
* fields can be mapped either automatically or are explicitly mapped.
*/
protected static final Validator MAPPED_SCHEMA_VALIDATOR = new Validator() {
@Override
public ValidationResult validate(String subject, String uri,
ValidationContext context) {
Configuration conf = getConfiguration(context.getProperty(
CONF_XML_FILES).getValue());
String inputUri = context.getProperty(INPUT_SCHEMA).getValue();
String error = null;
final boolean elPresent = context
.isExpressionLanguageSupported(subject)
&& context.isExpressionLanguagePresent(uri);
if (!elPresent) {
try {
Schema outputSchema = getSchema(uri, conf);
Schema inputSchema = getSchema(inputUri, conf);
// Get the explicitly mapped fields. This is identical to
// logic in onTrigger, but ValidationContext and
// ProcessContext share no ancestor, so we cannot generalize
// the code.
Map<String, String> fieldMapping = new HashMap<>();
for (final Map.Entry<PropertyDescriptor, String> entry : context
.getProperties().entrySet()) {
if (entry.getKey().isDynamic()) {
fieldMapping.put(entry.getKey().getName(),
entry.getValue());
}
}
AvroRecordConverter converter = new AvroRecordConverter(
inputSchema, outputSchema, fieldMapping);
Collection<String> unmappedFields = converter
.getUnmappedFields();
if (unmappedFields.size() > 0) {
error = "The following fields are unmapped: "
+ unmappedFields;
}
} catch (SchemaNotFoundException e) {
error = e.getMessage();
}
}
return new ValidationResult.Builder().subject(subject).input(uri)
.explanation(error).valid(error == null).build();
}
};
@VisibleForTesting
static final PropertyDescriptor INPUT_SCHEMA = new PropertyDescriptor.Builder()
.name("Input Schema").description("Avro Schema of Input Flowfiles")
.addValidator(SCHEMA_VALIDATOR).expressionLanguageSupported(true)
.required(true).build();
@VisibleForTesting
static final PropertyDescriptor OUTPUT_SCHEMA = new PropertyDescriptor.Builder()
.name("Output Schema")
.description("Avro Schema of Output Flowfiles")
.addValidator(MAPPED_SCHEMA_VALIDATOR).expressionLanguageSupported(true)
.required(true).build();
private static final List<PropertyDescriptor> PROPERTIES = ImmutableList
.<PropertyDescriptor> builder()
.addAll(AbstractKiteProcessor.getProperties()).add(INPUT_SCHEMA)
.add(OUTPUT_SCHEMA).build();
private static final Set<Relationship> RELATIONSHIPS = ImmutableSet
.<Relationship> builder().add(SUCCESS).add(FAILURE).build();
private static final Pattern AVRO_FIELDNAME_PATTERN = Pattern
.compile("[A-Za-z_][A-Za-z0-9_\\.]*");
/**
* Validates that the input and output fields (from dynamic properties) are
* all valid avro field names including "." to step into records.
*/
protected static final Validator AVRO_FIELDNAME_VALIDATOR = new Validator() {
@Override
public ValidationResult validate(final String subject,
final String value, final ValidationContext context) {
if (context.isExpressionLanguageSupported(subject)
&& context.isExpressionLanguagePresent(value)) {
return new ValidationResult.Builder().subject(subject)
.input(value)
.explanation("Expression Language Present").valid(true)
.build();
}
String reason = "";
if (!AVRO_FIELDNAME_PATTERN.matcher(subject).matches()) {
reason = subject + " is not a valid Avro fieldname";
}
if (!AVRO_FIELDNAME_PATTERN.matcher(value).matches()) {
reason = reason + value + " is not a valid Avro fieldname";
}
return new ValidationResult.Builder().subject(subject).input(value)
.explanation(reason).valid(reason.equals("")).build();
}
};
@Override
protected PropertyDescriptor getSupportedDynamicPropertyDescriptor(
final String propertyDescriptorName) {
return new PropertyDescriptor.Builder()
.name(propertyDescriptorName)
.description(
"Field mapping between schemas. The property name is the field name for the input "
+ "schema, and the property value is the field name for the output schema. For fields "
+ "not listed, the processor tries to match names from the input to the output record.")
.dynamic(true).addValidator(AVRO_FIELDNAME_VALIDATOR).build();
}
@Override
protected List<PropertyDescriptor> getSupportedPropertyDescriptors() {
return PROPERTIES;
}
@Override
public Set<Relationship> getRelationships() {
return RELATIONSHIPS;
}
@Override
public void onTrigger(ProcessContext context, final ProcessSession session)
throws ProcessException {
FlowFile incomingAvro = session.get();
if (incomingAvro == null) {
return;
}
String inputSchemaProperty = context.getProperty(INPUT_SCHEMA)
.evaluateAttributeExpressions(incomingAvro).getValue();
final Schema inputSchema;
try {
inputSchema = getSchema(inputSchemaProperty,
DefaultConfiguration.get());
} catch (SchemaNotFoundException e) {
getLogger().error("Cannot find schema: " + inputSchemaProperty);
session.transfer(incomingAvro, FAILURE);
return;
}
String outputSchemaProperty = context.getProperty(OUTPUT_SCHEMA)
.evaluateAttributeExpressions(incomingAvro).getValue();
final Schema outputSchema;
try {
outputSchema = getSchema(outputSchemaProperty,
DefaultConfiguration.get());
} catch (SchemaNotFoundException e) {
getLogger().error("Cannot find schema: " + outputSchemaProperty);
session.transfer(incomingAvro, FAILURE);
return;
}
final Map<String, String> fieldMapping = new HashMap<>();
for (final Map.Entry<PropertyDescriptor, String> entry : context
.getProperties().entrySet()) {
if (entry.getKey().isDynamic()) {
fieldMapping.put(entry.getKey().getName(), entry.getValue());
}
}
final AvroRecordConverter converter = new AvroRecordConverter(
inputSchema, outputSchema, fieldMapping);
final DataFileWriter<Record> writer = new DataFileWriter<>(
AvroUtil.newDatumWriter(outputSchema, Record.class));
writer.setCodec(CodecFactory.snappyCodec());
final DataFileWriter<Record> failureWriter = new DataFileWriter<>(
AvroUtil.newDatumWriter(outputSchema, Record.class));
failureWriter.setCodec(CodecFactory.snappyCodec());
try {
final LongHolder written = new LongHolder(0L);
final FailureTracker failures = new FailureTracker();
final List<Record> badRecords = Lists.newLinkedList();
FlowFile incomingAvroCopy = session.clone(incomingAvro);
FlowFile outgoingAvro = session.write(incomingAvro,
new StreamCallback() {
@Override
public void process(InputStream in, OutputStream out)
throws IOException {
try (DataFileStream<Record> stream = new DataFileStream<Record>(
in, new GenericDatumReader<Record>(
converter.getInputSchema()))) {
try (DataFileWriter<Record> w = writer.create(
outputSchema, out)) {
for (Record record : stream) {
try {
Record converted = converter
.convert(record);
w.append(converted);
written.incrementAndGet();
} catch (AvroConversionException e) {
failures.add(e);
getLogger().error(
"Error converting data: "
+ e.getMessage());
badRecords.add(record);
}
}
}
}
}
});
FlowFile badOutput = session.write(incomingAvroCopy,
new StreamCallback() {
@Override
public void process(InputStream in, OutputStream out)
throws IOException {
try (DataFileWriter<Record> w = failureWriter
.create(inputSchema, out)) {
for (Record record : badRecords) {
w.append(record);
}
}
}
});
long errors = failures.count();
// update only if file transfer is successful
session.adjustCounter("Converted records", written.get(), false);
// update only if file transfer is successful
session.adjustCounter("Conversion errors", errors, false);
if (written.get() > 0L) {
session.transfer(outgoingAvro, SUCCESS);
} else {
session.remove(outgoingAvro);
if (errors == 0L) {
badOutput = session.putAttribute(badOutput, "errors",
"No incoming records");
session.transfer(badOutput, FAILURE);
}
}
if (errors > 0L) {
getLogger().warn(
"Failed to convert {}/{} records between Avro Schemas",
new Object[] { errors, errors + written.get() });
badOutput = session.putAttribute(badOutput, "errors",
failures.summary());
session.transfer(badOutput, FAILURE);
} else {
session.remove(badOutput);
}
} catch (ProcessException | DatasetIOException e) {
getLogger().error("Failed reading or writing", e);
session.transfer(incomingAvro, FAILURE);
} catch (DatasetException e) {
getLogger().error("Failed to read FlowFile", e);
session.transfer(incomingAvro, FAILURE);
}
}
}

View File

@ -15,3 +15,4 @@
org.apache.nifi.processors.kite.StoreInKiteDataset org.apache.nifi.processors.kite.StoreInKiteDataset
org.apache.nifi.processors.kite.ConvertCSVToAvro org.apache.nifi.processors.kite.ConvertCSVToAvro
org.apache.nifi.processors.kite.ConvertJSONToAvro org.apache.nifi.processors.kite.ConvertJSONToAvro
org.apache.nifi.processors.kite.ConvertAvroSchema

View File

@ -0,0 +1,142 @@
<!DOCTYPE html>
<html lang="en">
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<head>
<meta charset="utf-8" />
<title>ConvertAvroSchema</title>
<link rel="stylesheet" href="../../css/component-usage.css" type="text/css" />
</head>
<body>
<!-- Processor Documentation ================================================== -->
<h2>Description:</h2>
<p>This processor is used to convert data between two Avro formats, such as those coming from the <code>ConvertCSVToAvro</code> or
<code>ConvertJSONToAvro</code> processors. The input and output content of the flow files should be Avro data files. The processor
includes support for the following basic type conversions:
<ul>
<li>Anything to String, using the data's default String representation</li>
<li>String types to numeric types int, long, double, and float</li>
<li>Conversion to and from optional Avro types</li>
</ul>
In addition, fields can be renamed or unpacked from a record type by using the dynamic properties.
</p>
<h2>Mapping Example:</h2>
<p>
Throughout this example, we will refer to input data with the following schema:
<pre>
{
"type": "record",
"name": "CustomerInput",
"namespace": "org.apache.example",
"fields": [
{
"name": "id",
"type": "string"
},
{
"name": "companyName",
"type": ["null", "string"],
"default": null
},
{
"name": "revenue",
"type": ["null", "string"],
"default": null
},
{
"name" : "parent",
"type" : [ "null", {
"type" : "record",
"name" : "parent",
"fields" : [ {
"name" : "name",
"type" : ["null", "string"],
"default" : null
}, {
"name" : "id",
"type" : "string"
} ]
} ],
"default" : null
}
]
}
</pre>
Where even though the revenue and id fields are mapped as string, they are logically long and double respectively.
By default, fields with matching names will be mapped automatically, so the following output schema could be converted
without using dynamic properties:
<pre>
{
"type": "record",
"name": "SimpleCustomerOutput",
"namespace": "org.apache.example",
"fields": [
{
"name": "id",
"type": "long"
},
{
"name": "companyName",
"type": ["null", "string"],
"default": null
},
{
"name": "revenue",
"type": ["null", "double"],
"default": null
}
]
}
</pre>
To rename companyName to name and to extract the parent's id field, both a schema and a dynamic properties must be provided.
For example, to convert to the following schema:
<pre>
{
"type": "record",
"name": "SimpleCustomerOutput",
"namespace": "org.apache.example",
"fields": [
{
"name": "id",
"type": "long"
},
{
"name": "name",
"type": ["null", "string"],
"default": null
},
{
"name": "revenue",
"type": ["null", "double"],
"default": null
},
{
"name": "parentId",
"type": ["null", "long"],
"default": null
}
]
}
</pre>
The following dynamic properties would be used:
<pre>
"companyName" -> "name"
"parent.id" -> "parentId"
</pre>
</p>
</body>
</html>

View File

@ -0,0 +1,201 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.nifi.processors.kite;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNull;
import java.util.Collections;
import java.util.Map;
import org.apache.avro.Schema;
import org.apache.avro.SchemaBuilder;
import org.apache.avro.generic.GenericData.Record;
import org.codehaus.jackson.map.ObjectMapper;
import org.junit.Test;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
public class TestAvroRecordConverter {
final static ObjectMapper OBJECT_MAPPER = new ObjectMapper();
final static Map<String, String> EMPTY_MAPPING = ImmutableMap.of();
final static String NESTED_RECORD_SCHEMA_STRING = "{\n"
+ " \"type\": \"record\",\n"
+ " \"name\": \"NestedInput\",\n"
+ " \"namespace\": \"org.apache.example\",\n"
+ " \"fields\": [\n" + " {\n"
+ " \"name\": \"l1\",\n"
+ " \"type\": \"long\"\n"
+ " },\n"
+ " {\n" + " \"name\": \"s1\",\n"
+ " \"type\": \"string\"\n"
+ " },\n"
+ " {\n"
+ " \"name\": \"parent\",\n"
+ " \"type\": [\"null\", {\n"
+ " \"type\": \"record\",\n"
+ " \"name\": \"parent\",\n"
+ " \"fields\": [\n"
+ " { \"name\": \"id\", \"type\": \"long\" },\n"
+ " { \"name\": \"name\", \"type\": \"string\" }\n"
+ " ]"
+ " } ]"
+ " }"
+ " ] }";
final static Schema NESTED_RECORD_SCHEMA = new Schema.Parser()
.parse(NESTED_RECORD_SCHEMA_STRING);
final static Schema NESTED_PARENT_SCHEMA = AvroRecordConverter
.getNonNullSchema(NESTED_RECORD_SCHEMA.getField("parent").schema());
final static Schema UNNESTED_OUTPUT_SCHEMA = SchemaBuilder.record("Output")
.namespace("org.apache.example").fields().requiredLong("l1")
.requiredLong("s1").optionalLong("parentId").endRecord();
/**
* Tests the case where we don't use a mapping file and just map records by
* name.
*/
@Test
public void testDefaultConversion() throws Exception {
// We will convert s1 from string to long (or leave it null), ignore s2,
// convert s3 to from string to double, convert l1 from long to string,
// and leave l2 the same.
Schema input = SchemaBuilder.record("Input")
.namespace("com.cloudera.edh").fields()
.nullableString("s1", "").requiredString("s2")
.requiredString("s3").optionalLong("l1").requiredLong("l2")
.endRecord();
Schema output = SchemaBuilder.record("Output")
.namespace("com.cloudera.edh").fields().optionalLong("s1")
.optionalString("l1").requiredLong("l2").requiredDouble("s3")
.endRecord();
AvroRecordConverter converter = new AvroRecordConverter(input, output,
EMPTY_MAPPING);
Record inputRecord = new Record(input);
inputRecord.put("s1", null);
inputRecord.put("s2", "blah");
inputRecord.put("s3", "5.5");
inputRecord.put("l1", null);
inputRecord.put("l2", 5L);
Record outputRecord = converter.convert(inputRecord);
assertNull(outputRecord.get("s1"));
assertNull(outputRecord.get("l1"));
assertEquals(5L, outputRecord.get("l2"));
assertEquals(5.5, outputRecord.get("s3"));
inputRecord.put("s1", "500");
inputRecord.put("s2", "blah");
inputRecord.put("s3", "5.5e-5");
inputRecord.put("l1", 100L);
inputRecord.put("l2", 2L);
outputRecord = converter.convert(inputRecord);
assertEquals(500L, outputRecord.get("s1"));
assertEquals("100", outputRecord.get("l1"));
assertEquals(2L, outputRecord.get("l2"));
assertEquals(5.5e-5, outputRecord.get("s3"));
}
/**
* Tests the case where we want to default map one field and explicitly map
* another.
*/
@Test
public void testExplicitMapping() throws Exception {
// We will convert s1 from string to long (or leave it null), ignore s2,
// convert l1 from long to string, and leave l2 the same.
Schema input = NESTED_RECORD_SCHEMA;
Schema parent = NESTED_PARENT_SCHEMA;
Schema output = UNNESTED_OUTPUT_SCHEMA;
Map<String, String> mapping = ImmutableMap.of("parent.id", "parentId");
AvroRecordConverter converter = new AvroRecordConverter(input, output,
mapping);
Record inputRecord = new Record(input);
inputRecord.put("l1", 5L);
inputRecord.put("s1", "1000");
Record parentRecord = new Record(parent);
parentRecord.put("id", 200L);
parentRecord.put("name", "parent");
inputRecord.put("parent", parentRecord);
Record outputRecord = converter.convert(inputRecord);
assertEquals(5L, outputRecord.get("l1"));
assertEquals(1000L, outputRecord.get("s1"));
assertEquals(200L, outputRecord.get("parentId"));
}
/**
* Tests the case where we try to convert a string to a long incorrectly.
*/
@Test(expected = org.apache.nifi.processors.kite.AvroRecordConverter.AvroConversionException.class)
public void testIllegalConversion() throws Exception {
// We will convert s1 from string to long (or leave it null), ignore s2,
// convert l1 from long to string, and leave l2 the same.
Schema input = SchemaBuilder.record("Input")
.namespace("com.cloudera.edh").fields()
.nullableString("s1", "").requiredString("s2")
.optionalLong("l1").requiredLong("l2").endRecord();
Schema output = SchemaBuilder.record("Output")
.namespace("com.cloudera.edh").fields().optionalLong("s1")
.optionalString("l1").requiredLong("l2").endRecord();
AvroRecordConverter converter = new AvroRecordConverter(input, output,
EMPTY_MAPPING);
Record inputRecord = new Record(input);
inputRecord.put("s1", "blah");
inputRecord.put("s2", "blah");
inputRecord.put("l1", null);
inputRecord.put("l2", 5L);
converter.convert(inputRecord);
}
@Test
public void testGetUnmappedFields() throws Exception {
Schema input = SchemaBuilder.record("Input")
.namespace("com.cloudera.edh").fields()
.nullableString("s1", "").requiredString("s2")
.optionalLong("l1").requiredLong("l2").endRecord();
Schema output = SchemaBuilder.record("Output")
.namespace("com.cloudera.edh").fields().optionalLong("field")
.endRecord();
// Test the case where the field isn't mapped at all.
AvroRecordConverter converter = new AvroRecordConverter(input, output,
EMPTY_MAPPING);
assertEquals(ImmutableList.of("field"), converter.getUnmappedFields());
// Test the case where we tried to map from a non-existent field.
converter = new AvroRecordConverter(input, output, ImmutableMap.of(
"nonExistentField", "field"));
assertEquals(ImmutableList.of("field"), converter.getUnmappedFields());
// Test the case where we tried to map from a non-existent record.
converter = new AvroRecordConverter(input, output, ImmutableMap.of(
"parent.nonExistentField", "field"));
assertEquals(ImmutableList.of("field"), converter.getUnmappedFields());
// Test a valid case
converter = new AvroRecordConverter(input, output, ImmutableMap.of(
"l2", "field"));
assertEquals(Collections.EMPTY_LIST, converter.getUnmappedFields());
}
}

View File

@ -0,0 +1,216 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.nifi.processors.kite;
import static org.apache.nifi.processors.kite.TestUtil.streamFor;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.util.List;
import org.apache.avro.Schema;
import org.apache.avro.SchemaBuilder;
import org.apache.avro.file.DataFileStream;
import org.apache.avro.generic.GenericData.Record;
import org.apache.avro.generic.GenericDatumReader;
import org.apache.nifi.util.MockFlowFile;
import org.apache.nifi.util.TestRunner;
import org.apache.nifi.util.TestRunners;
import org.junit.Assert;
import org.junit.Test;
import com.google.common.collect.Lists;
public class TestConvertAvroSchema {
public static final Schema INPUT_SCHEMA = SchemaBuilder.record("InputTest")
.fields().requiredString("id").requiredString("primaryColor")
.optionalString("secondaryColor").optionalString("price")
.endRecord();
public static final Schema OUTPUT_SCHEMA = SchemaBuilder.record("Test")
.fields().requiredLong("id").requiredString("color")
.optionalDouble("price").endRecord();
public static final String MAPPING = "[{\"source\":\"primaryColor\", \"target\":\"color\"}]";
public static final String FAILURE_SUMMARY = "Cannot convert free to double";
@Test
public void testBasicConversion() throws IOException {
TestRunner runner = TestRunners.newTestRunner(ConvertAvroSchema.class);
runner.assertNotValid();
runner.setProperty(ConvertAvroSchema.INPUT_SCHEMA,
INPUT_SCHEMA.toString());
runner.setProperty(ConvertAvroSchema.OUTPUT_SCHEMA,
OUTPUT_SCHEMA.toString());
runner.setProperty("primaryColor", "color");
runner.assertValid();
// Two valid rows, and one invalid because "free" is not a double.
Record goodRecord1 = dataBasic("1", "blue", null, null);
Record goodRecord2 = dataBasic("2", "red", "yellow", "5.5");
Record badRecord = dataBasic("3", "red", "yellow", "free");
List<Record> input = Lists.newArrayList(goodRecord1, goodRecord2,
badRecord);
runner.enqueue(streamFor(input));
runner.run();
long converted = runner.getCounterValue("Converted records");
long errors = runner.getCounterValue("Conversion errors");
Assert.assertEquals("Should convert 2 rows", 2, converted);
Assert.assertEquals("Should reject 1 rows", 1, errors);
runner.assertTransferCount("success", 1);
runner.assertTransferCount("failure", 1);
MockFlowFile incompatible = runner.getFlowFilesForRelationship(
"failure").get(0);
GenericDatumReader<Record> reader = new GenericDatumReader<Record>(
INPUT_SCHEMA);
DataFileStream<Record> stream = new DataFileStream<Record>(
new ByteArrayInputStream(
runner.getContentAsByteArray(incompatible)), reader);
int count = 0;
for (Record r : stream) {
Assert.assertEquals(badRecord, r);
count++;
}
stream.close();
Assert.assertEquals(1, count);
Assert.assertEquals("Should accumulate error messages",
FAILURE_SUMMARY, incompatible.getAttribute("errors"));
GenericDatumReader<Record> successReader = new GenericDatumReader<Record>(
OUTPUT_SCHEMA);
DataFileStream<Record> successStream = new DataFileStream<Record>(
new ByteArrayInputStream(runner.getContentAsByteArray(runner
.getFlowFilesForRelationship("success").get(0))),
successReader);
count = 0;
for (Record r : successStream) {
if (count == 0) {
Assert.assertEquals(convertBasic(goodRecord1), r);
} else {
Assert.assertEquals(convertBasic(goodRecord2), r);
}
count++;
}
successStream.close();
Assert.assertEquals(2, count);
}
@Test
public void testNestedConversion() throws IOException {
TestRunner runner = TestRunners.newTestRunner(ConvertAvroSchema.class);
runner.assertNotValid();
runner.setProperty(ConvertAvroSchema.INPUT_SCHEMA,
TestAvroRecordConverter.NESTED_RECORD_SCHEMA.toString());
runner.setProperty(ConvertAvroSchema.OUTPUT_SCHEMA,
TestAvroRecordConverter.UNNESTED_OUTPUT_SCHEMA.toString());
runner.setProperty("parent.id", "parentId");
runner.assertValid();
// Two valid rows
Record goodRecord1 = dataNested(1L, "200", null, null);
Record goodRecord2 = dataNested(2L, "300", 5L, "ParentCompany");
List<Record> input = Lists.newArrayList(goodRecord1, goodRecord2);
runner.enqueue(streamFor(input));
runner.run();
long converted = runner.getCounterValue("Converted records");
long errors = runner.getCounterValue("Conversion errors");
Assert.assertEquals("Should convert 2 rows", 2, converted);
Assert.assertEquals("Should reject 0 rows", 0, errors);
runner.assertTransferCount("success", 1);
runner.assertTransferCount("failure", 0);
GenericDatumReader<Record> successReader = new GenericDatumReader<Record>(
TestAvroRecordConverter.UNNESTED_OUTPUT_SCHEMA);
DataFileStream<Record> successStream = new DataFileStream<Record>(
new ByteArrayInputStream(runner.getContentAsByteArray(runner
.getFlowFilesForRelationship("success").get(0))),
successReader);
int count = 0;
for (Record r : successStream) {
if (count == 0) {
Assert.assertEquals(convertNested(goodRecord1), r);
} else {
Assert.assertEquals(convertNested(goodRecord2), r);
}
count++;
}
successStream.close();
Assert.assertEquals(2, count);
}
private Record convertBasic(Record inputRecord) {
Record result = new Record(OUTPUT_SCHEMA);
result.put("id", Long.parseLong(inputRecord.get("id").toString()));
result.put("color", inputRecord.get("primaryColor").toString());
if (inputRecord.get("price") == null) {
result.put("price", null);
} else {
result.put("price",
Double.parseDouble(inputRecord.get("price").toString()));
}
return result;
}
private Record dataBasic(String id, String primaryColor,
String secondaryColor, String price) {
Record result = new Record(INPUT_SCHEMA);
result.put("id", id);
result.put("primaryColor", primaryColor);
result.put("secondaryColor", secondaryColor);
result.put("price", price);
return result;
}
private Record convertNested(Record inputRecord) {
Record result = new Record(
TestAvroRecordConverter.UNNESTED_OUTPUT_SCHEMA);
result.put("l1", inputRecord.get("l1"));
result.put("s1", Long.parseLong(inputRecord.get("s1").toString()));
if (inputRecord.get("parent") != null) {
// output schema doesn't have parent name.
result.put("parentId",
((Record) inputRecord.get("parent")).get("id"));
}
return result;
}
private Record dataNested(long id, String companyName, Long parentId,
String parentName) {
Record result = new Record(TestAvroRecordConverter.NESTED_RECORD_SCHEMA);
result.put("l1", id);
result.put("s1", companyName);
if (parentId != null || parentName != null) {
Record parent = new Record(
TestAvroRecordConverter.NESTED_PARENT_SCHEMA);
parent.put("id", parentId);
parent.put("name", parentName);
result.put("parent", parent);
}
return result;
}
}