mirror of https://github.com/apache/poi.git
github-32: speed up Irr() Excel formula computation by replacing Math.pow() with multiplication. Thanks to Daniel Kuan! This closes #32.
https://github.com/apache/poi/pull/32 git-svn-id: https://svn.apache.org/repos/asf/poi/trunk@1795266 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
007a4d156a
commit
62460074b3
|
@ -24,9 +24,6 @@ import org.apache.poi.ss.formula.eval.*;
|
|||
*
|
||||
* Syntax is IRR(values) or IRR(values,guess)
|
||||
*
|
||||
* @author Marcel May
|
||||
* @author Yegor Kozlov
|
||||
*
|
||||
* @see <a href="http://en.wikipedia.org/wiki/Internal_rate_of_return#Numerical_solution">Wikipedia on IRR</a>
|
||||
* @see <a href="http://office.microsoft.com/en-us/excel-help/irr-HP005209146.aspx">Excel IRR</a>
|
||||
*/
|
||||
|
@ -89,8 +86,8 @@ public final class Irr implements Function {
|
|||
* http://en.wikipedia.org/wiki/Newton%27s_method</a>
|
||||
*/
|
||||
public static double irr(double[] values, double guess) {
|
||||
int maxIterationCount = 20;
|
||||
double absoluteAccuracy = 1E-7;
|
||||
final int maxIterationCount = 20;
|
||||
final double absoluteAccuracy = 1E-7;
|
||||
|
||||
double x0 = guess;
|
||||
double x1;
|
||||
|
@ -99,11 +96,15 @@ public final class Irr implements Function {
|
|||
while (i < maxIterationCount) {
|
||||
|
||||
// the value of the function (NPV) and its derivate can be calculated in the same loop
|
||||
double fValue = 0;
|
||||
final double factor = 1.0 + x0;
|
||||
int k = 0;
|
||||
double fValue = values[k];
|
||||
double fDerivative = 0;
|
||||
for (int k = 0; k < values.length; k++) {
|
||||
fValue += values[k] / Math.pow(1.0 + x0, k);
|
||||
fDerivative += -k * values[k] / Math.pow(1.0 + x0, k + 1);
|
||||
for (double denominator = factor; ++k < values.length; ) {
|
||||
final double value = values[k];
|
||||
fValue += value / denominator;
|
||||
denominator *= factor;
|
||||
fDerivative -= k * value / denominator;
|
||||
}
|
||||
|
||||
// the essense of the Newton-Raphson Method
|
||||
|
|
Loading…
Reference in New Issue