parent
f02a7d2b28
commit
6d2d3b9a69
|
@ -109,7 +109,11 @@
|
|||
** xref:reactive/oauth2/index.adoc[OAuth2]
|
||||
*** xref:reactive/oauth2/login.adoc[OAuth2 Log In]
|
||||
*** xref:reactive/oauth2/oauth2-client.adoc[OAuth2 Client]
|
||||
*** xref:reactive/oauth2/resource-server.adoc[OAuth2 Resource Server]
|
||||
*** xref:reactive/oauth2/resource-server/index.adoc[OAuth2 Resource Server]
|
||||
**** xref:reactive/oauth2/resource-server/jwt.adoc[JWT]
|
||||
**** xref:reactive/oauth2/resource-server/opaque-token.adoc[Opaque Token]
|
||||
**** xref:reactive/oauth2/resource-server/multitenancy.adoc[Multitenancy]
|
||||
**** xref:reactive/oauth2/resource-server/bearer-tokens.adoc[Bearer Tokens]
|
||||
** xref:reactive/exploits/index.adoc[Protection Against Exploits]
|
||||
*** xref:reactive/exploits/csrf.adoc[CSRF]
|
||||
*** xref:reactive/exploits/headers.adoc[Headers]
|
||||
|
|
|
@ -5,4 +5,4 @@ Spring Security provides OAuth2 and WebFlux integration for reactive application
|
|||
|
||||
* xref:reactive/oauth2/login.adoc[OAuth2 Log In] - Authenticating with an OAuth2 or OpenID Connect 1.0 Provider
|
||||
* xref:reactive/oauth2/oauth2-client.adoc[OAuth2 Client] - Making requests to an OAuth2 Resource Server
|
||||
* xref:reactive/oauth2/resource-server.adoc[OAuth2 Resource Server] - Protecting a REST endpoint using OAuth2
|
||||
* xref:reactive/oauth2/resource-server/index.adoc[OAuth2 Resource Server] - Protecting a REST endpoint using OAuth2
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,122 @@
|
|||
= OAuth 2.0 Resource Server Bearer Tokens
|
||||
|
||||
[[webflux-oauth2resourceserver-bearertoken-resolver]]
|
||||
== Bearer Token Resolution
|
||||
|
||||
By default, Resource Server looks for a bearer token in the `Authorization` header.
|
||||
This, however, can be customized.
|
||||
|
||||
For example, you may have a need to read the bearer token from a custom header.
|
||||
To achieve this, you can wire an instance of `ServerBearerTokenAuthenticationConverter` into the DSL, as you can see in the following example:
|
||||
|
||||
.Custom Bearer Token Header
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
ServerBearerTokenAuthenticationConverter converter = new ServerBearerTokenAuthenticationConverter();
|
||||
converter.setBearerTokenHeaderName(HttpHeaders.PROXY_AUTHORIZATION);
|
||||
http
|
||||
.oauth2ResourceServer(oauth2 -> oauth2
|
||||
.bearerTokenConverter(converter)
|
||||
);
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
val converter = ServerBearerTokenAuthenticationConverter()
|
||||
converter.setBearerTokenHeaderName(HttpHeaders.PROXY_AUTHORIZATION)
|
||||
return http {
|
||||
oauth2ResourceServer {
|
||||
bearerTokenConverter = converter
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
== Bearer Token Propagation
|
||||
|
||||
Now that you're in possession of a bearer token, it might be handy to pass that to downstream services.
|
||||
This is quite simple with `{security-api-url}org/springframework/security/oauth2/server/resource/web/reactive/function/client/ServerBearerExchangeFilterFunction.html[ServerBearerExchangeFilterFunction]`, which you can see in the following example:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
public WebClient rest() {
|
||||
return WebClient.builder()
|
||||
.filter(new ServerBearerExchangeFilterFunction())
|
||||
.build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun rest(): WebClient {
|
||||
return WebClient.builder()
|
||||
.filter(ServerBearerExchangeFilterFunction())
|
||||
.build()
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
When the above `WebClient` is used to perform requests, Spring Security will look up the current `Authentication` and extract any `{security-api-url}org/springframework/security/oauth2/core/AbstractOAuth2Token.html[AbstractOAuth2Token]` credential.
|
||||
Then, it will propagate that token in the `Authorization` header.
|
||||
|
||||
For example:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
this.rest.get()
|
||||
.uri("https://other-service.example.com/endpoint")
|
||||
.retrieve()
|
||||
.bodyToMono(String.class)
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
this.rest.get()
|
||||
.uri("https://other-service.example.com/endpoint")
|
||||
.retrieve()
|
||||
.bodyToMono<String>()
|
||||
----
|
||||
====
|
||||
|
||||
Will invoke the `https://other-service.example.com/endpoint`, adding the bearer token `Authorization` header for you.
|
||||
|
||||
In places where you need to override this behavior, it's a simple matter of supplying the header yourself, like so:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
this.rest.get()
|
||||
.uri("https://other-service.example.com/endpoint")
|
||||
.headers(headers -> headers.setBearerAuth(overridingToken))
|
||||
.retrieve()
|
||||
.bodyToMono(String.class)
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
rest.get()
|
||||
.uri("https://other-service.example.com/endpoint")
|
||||
.headers { it.setBearerAuth(overridingToken) }
|
||||
.retrieve()
|
||||
.bodyToMono<String>()
|
||||
----
|
||||
====
|
||||
|
||||
In this case, the filter will fall back and simply forward the request onto the rest of the web filter chain.
|
||||
|
||||
[NOTE]
|
||||
Unlike the https://docs.spring.io/spring-security/site/docs/current-SNAPSHOT/api/org/springframework/security/oauth2/client/web/reactive/function/client/ServerOAuth2AuthorizedClientExchangeFilterFunction.html[OAuth 2.0 Client filter function], this filter function makes no attempt to renew the token, should it be expired.
|
||||
To obtain this level of support, please use the OAuth 2.0 Client filter.
|
|
@ -0,0 +1,15 @@
|
|||
[[webflux-oauth2-resource-server]]
|
||||
= OAuth 2.0 Resource Server
|
||||
|
||||
Spring Security supports protecting endpoints using two forms of OAuth 2.0 https://tools.ietf.org/html/rfc6750.html[Bearer Tokens]:
|
||||
|
||||
* https://tools.ietf.org/html/rfc7519[JWT]
|
||||
* Opaque Tokens
|
||||
|
||||
This is handy in circumstances where an application has delegated its authority management to an https://tools.ietf.org/html/rfc6749[authorization server] (for example, Okta or Ping Identity).
|
||||
This authorization server can be consulted by resource servers to authorize requests.
|
||||
|
||||
[NOTE]
|
||||
====
|
||||
A complete working example for {gh-samples-url}/reactive/webflux/java/oauth2/resource-server[*JWTs*] is available in the {gh-samples-url}[Spring Security repository].
|
||||
====
|
|
@ -0,0 +1,882 @@
|
|||
= OAuth 2.0 Resource Server JWT
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-minimaldependencies]]
|
||||
== Minimal Dependencies for JWT
|
||||
|
||||
Most Resource Server support is collected into `spring-security-oauth2-resource-server`.
|
||||
However, the support for decoding and verifying JWTs is in `spring-security-oauth2-jose`, meaning that both are necessary in order to have a working resource server that supports JWT-encoded Bearer Tokens.
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-minimalconfiguration]]
|
||||
== Minimal Configuration for JWTs
|
||||
|
||||
When using https://spring.io/projects/spring-boot[Spring Boot], configuring an application as a resource server consists of two basic steps.
|
||||
First, include the needed dependencies and second, indicate the location of the authorization server.
|
||||
|
||||
=== Specifying the Authorization Server
|
||||
|
||||
In a Spring Boot application, to specify which authorization server to use, simply do:
|
||||
|
||||
[source,yml]
|
||||
----
|
||||
spring:
|
||||
security:
|
||||
oauth2:
|
||||
resourceserver:
|
||||
jwt:
|
||||
issuer-uri: https://idp.example.com/issuer
|
||||
----
|
||||
|
||||
Where `https://idp.example.com/issuer` is the value contained in the `iss` claim for JWT tokens that the authorization server will issue.
|
||||
Resource Server will use this property to further self-configure, discover the authorization server's public keys, and subsequently validate incoming JWTs.
|
||||
|
||||
[NOTE]
|
||||
To use the `issuer-uri` property, it must also be true that one of `https://idp.example.com/issuer/.well-known/openid-configuration`, `https://idp.example.com/.well-known/openid-configuration/issuer`, or `https://idp.example.com/.well-known/oauth-authorization-server/issuer` is a supported endpoint for the authorization server.
|
||||
This endpoint is referred to as a https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig[Provider Configuration] endpoint or a https://tools.ietf.org/html/rfc8414#section-3[Authorization Server Metadata] endpoint.
|
||||
|
||||
And that's it!
|
||||
|
||||
=== Startup Expectations
|
||||
|
||||
When this property and these dependencies are used, Resource Server will automatically configure itself to validate JWT-encoded Bearer Tokens.
|
||||
|
||||
It achieves this through a deterministic startup process:
|
||||
|
||||
1. Hit the Provider Configuration or Authorization Server Metadata endpoint, processing the response for the `jwks_url` property
|
||||
2. Configure the validation strategy to query `jwks_url` for valid public keys
|
||||
3. Configure the validation strategy to validate each JWTs `iss` claim against `https://idp.example.com`.
|
||||
|
||||
A consequence of this process is that the authorization server must be up and receiving requests in order for Resource Server to successfully start up.
|
||||
|
||||
[NOTE]
|
||||
If the authorization server is down when Resource Server queries it (given appropriate timeouts), then startup will fail.
|
||||
|
||||
=== Runtime Expectations
|
||||
|
||||
Once the application is started up, Resource Server will attempt to process any request containing an `Authorization: Bearer` header:
|
||||
|
||||
[source,html]
|
||||
----
|
||||
GET / HTTP/1.1
|
||||
Authorization: Bearer some-token-value # Resource Server will process this
|
||||
----
|
||||
|
||||
So long as this scheme is indicated, Resource Server will attempt to process the request according to the Bearer Token specification.
|
||||
|
||||
Given a well-formed JWT, Resource Server will:
|
||||
|
||||
1. Validate its signature against a public key obtained from the `jwks_url` endpoint during startup and matched against the JWTs header
|
||||
2. Validate the JWTs `exp` and `nbf` timestamps and the JWTs `iss` claim, and
|
||||
3. Map each scope to an authority with the prefix `SCOPE_`.
|
||||
|
||||
[NOTE]
|
||||
As the authorization server makes available new keys, Spring Security will automatically rotate the keys used to validate the JWT tokens.
|
||||
|
||||
The resulting `Authentication#getPrincipal`, by default, is a Spring Security `Jwt` object, and `Authentication#getName` maps to the JWT's `sub` property, if one is present.
|
||||
|
||||
From here, consider jumping to:
|
||||
|
||||
<<webflux-oauth2resourceserver-jwt-jwkseturi,How to Configure without Tying Resource Server startup to an authorization server's availability>>
|
||||
|
||||
<<webflux-oauth2resourceserver-jwt-sansboot,How to Configure without Spring Boot>>
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-jwkseturi]]
|
||||
=== Specifying the Authorization Server JWK Set Uri Directly
|
||||
|
||||
If the authorization server doesn't support any configuration endpoints, or if Resource Server must be able to start up independently from the authorization server, then the `jwk-set-uri` can be supplied as well:
|
||||
|
||||
[source,yaml]
|
||||
----
|
||||
spring:
|
||||
security:
|
||||
oauth2:
|
||||
resourceserver:
|
||||
jwt:
|
||||
issuer-uri: https://idp.example.com
|
||||
jwk-set-uri: https://idp.example.com/.well-known/jwks.json
|
||||
----
|
||||
|
||||
[NOTE]
|
||||
The JWK Set uri is not standardized, but can typically be found in the authorization server's documentation
|
||||
|
||||
Consequently, Resource Server will not ping the authorization server at startup.
|
||||
We still specify the `issuer-uri` so that Resource Server still validates the `iss` claim on incoming JWTs.
|
||||
|
||||
[NOTE]
|
||||
This property can also be supplied directly on the <<webflux-oauth2resourceserver-jwt-jwkseturi-dsl,DSL>>.
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-sansboot]]
|
||||
=== Overriding or Replacing Boot Auto Configuration
|
||||
|
||||
There are two ``@Bean``s that Spring Boot generates on Resource Server's behalf.
|
||||
|
||||
The first is a `SecurityWebFilterChain` that configures the app as a resource server. When including `spring-security-oauth2-jose`, this `SecurityWebFilterChain` looks like:
|
||||
|
||||
.Resource Server SecurityWebFilterChain
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(OAuth2ResourceServerSpec::jwt)
|
||||
return http.build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
jwt { }
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
If the application doesn't expose a `SecurityWebFilterChain` bean, then Spring Boot will expose the above default one.
|
||||
|
||||
Replacing this is as simple as exposing the bean within the application:
|
||||
|
||||
.Replacing SecurityWebFilterChain
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.pathMatchers("/message/**").hasAuthority("SCOPE_message:read")
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(oauth2 -> oauth2
|
||||
.jwt(withDefaults())
|
||||
);
|
||||
return http.build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize("/message/**", hasAuthority("SCOPE_message:read"))
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
jwt { }
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
The above requires the scope of `message:read` for any URL that starts with `/messages/`.
|
||||
|
||||
Methods on the `oauth2ResourceServer` DSL will also override or replace auto configuration.
|
||||
|
||||
For example, the second `@Bean` Spring Boot creates is a `ReactiveJwtDecoder`, which decodes `String` tokens into validated instances of `Jwt`:
|
||||
|
||||
.ReactiveJwtDecoder
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
public ReactiveJwtDecoder jwtDecoder() {
|
||||
return ReactiveJwtDecoders.fromIssuerLocation(issuerUri);
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun jwtDecoder(): ReactiveJwtDecoder {
|
||||
return ReactiveJwtDecoders.fromIssuerLocation(issuerUri)
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
[NOTE]
|
||||
Calling `{security-api-url}org/springframework/security/oauth2/jwt/ReactiveJwtDecoders.html#fromIssuerLocation-java.lang.String-[ReactiveJwtDecoders#fromIssuerLocation]` is what invokes the Provider Configuration or Authorization Server Metadata endpoint in order to derive the JWK Set Uri.
|
||||
If the application doesn't expose a `ReactiveJwtDecoder` bean, then Spring Boot will expose the above default one.
|
||||
|
||||
And its configuration can be overridden using `jwkSetUri()` or replaced using `decoder()`.
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-jwkseturi-dsl]]
|
||||
==== Using `jwkSetUri()`
|
||||
|
||||
An authorization server's JWK Set Uri can be configured <<webflux-oauth2resourceserver-jwt-jwkseturi,as a configuration property>> or it can be supplied in the DSL:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(oauth2 -> oauth2
|
||||
.jwt(jwt -> jwt
|
||||
.jwkSetUri("https://idp.example.com/.well-known/jwks.json")
|
||||
)
|
||||
);
|
||||
return http.build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
jwt {
|
||||
jwkSetUri = "https://idp.example.com/.well-known/jwks.json"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Using `jwkSetUri()` takes precedence over any configuration property.
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-decoder-dsl]]
|
||||
==== Using `decoder()`
|
||||
|
||||
More powerful than `jwkSetUri()` is `decoder()`, which will completely replace any Boot auto configuration of `JwtDecoder`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(oauth2 -> oauth2
|
||||
.jwt(jwt -> jwt
|
||||
.decoder(myCustomDecoder())
|
||||
)
|
||||
);
|
||||
return http.build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
jwt {
|
||||
jwtDecoder = myCustomDecoder()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
This is handy when deeper configuration, like <<webflux-oauth2resourceserver-jwt-validation,validation>>, is necessary.
|
||||
|
||||
[[webflux-oauth2resourceserver-decoder-bean]]
|
||||
==== Exposing a `ReactiveJwtDecoder` `@Bean`
|
||||
|
||||
Or, exposing a `ReactiveJwtDecoder` `@Bean` has the same effect as `decoder()`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
public ReactiveJwtDecoder jwtDecoder() {
|
||||
return NimbusReactiveJwtDecoder.withJwkSetUri(jwkSetUri).build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun jwtDecoder(): ReactiveJwtDecoder {
|
||||
return ReactiveJwtDecoders.fromIssuerLocation(issuerUri)
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-decoder-algorithm]]
|
||||
== Configuring Trusted Algorithms
|
||||
|
||||
By default, `NimbusReactiveJwtDecoder`, and hence Resource Server, will only trust and verify tokens using `RS256`.
|
||||
|
||||
You can customize this via <<webflux-oauth2resourceserver-jwt-boot-algorithm,Spring Boot>> or <<webflux-oauth2resourceserver-jwt-decoder-builder,the NimbusJwtDecoder builder>>.
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-boot-algorithm]]
|
||||
=== Via Spring Boot
|
||||
|
||||
The simplest way to set the algorithm is as a property:
|
||||
|
||||
[source,yaml]
|
||||
----
|
||||
spring:
|
||||
security:
|
||||
oauth2:
|
||||
resourceserver:
|
||||
jwt:
|
||||
jws-algorithm: RS512
|
||||
jwk-set-uri: https://idp.example.org/.well-known/jwks.json
|
||||
----
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-decoder-builder]]
|
||||
=== Using a Builder
|
||||
|
||||
For greater power, though, we can use a builder that ships with `NimbusReactiveJwtDecoder`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
ReactiveJwtDecoder jwtDecoder() {
|
||||
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri)
|
||||
.jwsAlgorithm(RS512).build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun jwtDecoder(): ReactiveJwtDecoder {
|
||||
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri)
|
||||
.jwsAlgorithm(RS512).build()
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Calling `jwsAlgorithm` more than once will configure `NimbusReactiveJwtDecoder` to trust more than one algorithm, like so:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
ReactiveJwtDecoder jwtDecoder() {
|
||||
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri)
|
||||
.jwsAlgorithm(RS512).jwsAlgorithm(ES512).build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun jwtDecoder(): ReactiveJwtDecoder {
|
||||
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri)
|
||||
.jwsAlgorithm(RS512).jwsAlgorithm(ES512).build()
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Or, you can call `jwsAlgorithms`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
ReactiveJwtDecoder jwtDecoder() {
|
||||
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri)
|
||||
.jwsAlgorithms(algorithms -> {
|
||||
algorithms.add(RS512);
|
||||
algorithms.add(ES512);
|
||||
}).build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun jwtDecoder(): ReactiveJwtDecoder {
|
||||
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri)
|
||||
.jwsAlgorithms {
|
||||
it.add(RS512)
|
||||
it.add(ES512)
|
||||
}
|
||||
.build()
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-decoder-public-key]]
|
||||
=== Trusting a Single Asymmetric Key
|
||||
|
||||
Simpler than backing a Resource Server with a JWK Set endpoint is to hard-code an RSA public key.
|
||||
The public key can be provided via <<webflux-oauth2resourceserver-jwt-decoder-public-key-boot,Spring Boot>> or by <<webflux-oauth2resourceserver-jwt-decoder-public-key-builder,Using a Builder>>.
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-decoder-public-key-boot]]
|
||||
==== Via Spring Boot
|
||||
|
||||
Specifying a key via Spring Boot is quite simple.
|
||||
The key's location can be specified like so:
|
||||
|
||||
[source,yaml]
|
||||
----
|
||||
spring:
|
||||
security:
|
||||
oauth2:
|
||||
resourceserver:
|
||||
jwt:
|
||||
public-key-location: classpath:my-key.pub
|
||||
----
|
||||
|
||||
Or, to allow for a more sophisticated lookup, you can post-process the `RsaKeyConversionServicePostProcessor`:
|
||||
|
||||
.BeanFactoryPostProcessor
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
BeanFactoryPostProcessor conversionServiceCustomizer() {
|
||||
return beanFactory ->
|
||||
beanFactory.getBean(RsaKeyConversionServicePostProcessor.class)
|
||||
.setResourceLoader(new CustomResourceLoader());
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun conversionServiceCustomizer(): BeanFactoryPostProcessor {
|
||||
return BeanFactoryPostProcessor { beanFactory: ConfigurableListableBeanFactory ->
|
||||
beanFactory.getBean<RsaKeyConversionServicePostProcessor>()
|
||||
.setResourceLoader(CustomResourceLoader())
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Specify your key's location:
|
||||
|
||||
[source,yaml]
|
||||
----
|
||||
key.location: hfds://my-key.pub
|
||||
----
|
||||
|
||||
And then autowire the value:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Value("${key.location}")
|
||||
RSAPublicKey key;
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Value("\${key.location}")
|
||||
val key: RSAPublicKey? = null
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-decoder-public-key-builder]]
|
||||
==== Using a Builder
|
||||
|
||||
To wire an `RSAPublicKey` directly, you can simply use the appropriate `NimbusReactiveJwtDecoder` builder, like so:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
public ReactiveJwtDecoder jwtDecoder() {
|
||||
return NimbusReactiveJwtDecoder.withPublicKey(this.key).build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun jwtDecoder(): ReactiveJwtDecoder {
|
||||
return NimbusReactiveJwtDecoder.withPublicKey(key).build()
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-decoder-secret-key]]
|
||||
=== Trusting a Single Symmetric Key
|
||||
|
||||
Using a single symmetric key is also simple.
|
||||
You can simply load in your `SecretKey` and use the appropriate `NimbusReactiveJwtDecoder` builder, like so:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
public ReactiveJwtDecoder jwtDecoder() {
|
||||
return NimbusReactiveJwtDecoder.withSecretKey(this.key).build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun jwtDecoder(): ReactiveJwtDecoder {
|
||||
return NimbusReactiveJwtDecoder.withSecretKey(this.key).build()
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-authorization]]
|
||||
=== Configuring Authorization
|
||||
|
||||
A JWT that is issued from an OAuth 2.0 Authorization Server will typically either have a `scope` or `scp` attribute, indicating the scopes (or authorities) it's been granted, for example:
|
||||
|
||||
`{ ..., "scope" : "messages contacts"}`
|
||||
|
||||
When this is the case, Resource Server will attempt to coerce these scopes into a list of granted authorities, prefixing each scope with the string "SCOPE_".
|
||||
|
||||
This means that to protect an endpoint or method with a scope derived from a JWT, the corresponding expressions should include this prefix:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.mvcMatchers("/contacts/**").hasAuthority("SCOPE_contacts")
|
||||
.mvcMatchers("/messages/**").hasAuthority("SCOPE_messages")
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(OAuth2ResourceServerSpec::jwt);
|
||||
return http.build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize("/contacts/**", hasAuthority("SCOPE_contacts"))
|
||||
authorize("/messages/**", hasAuthority("SCOPE_messages"))
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
jwt { }
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Or similarly with method security:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@PreAuthorize("hasAuthority('SCOPE_messages')")
|
||||
public Flux<Message> getMessages(...) {}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@PreAuthorize("hasAuthority('SCOPE_messages')")
|
||||
fun getMessages(): Flux<Message> { }
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-authorization-extraction]]
|
||||
==== Extracting Authorities Manually
|
||||
|
||||
However, there are a number of circumstances where this default is insufficient.
|
||||
For example, some authorization servers don't use the `scope` attribute, but instead have their own custom attribute.
|
||||
Or, at other times, the resource server may need to adapt the attribute or a composition of attributes into internalized authorities.
|
||||
|
||||
To this end, the DSL exposes `jwtAuthenticationConverter()`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(oauth2 -> oauth2
|
||||
.jwt(jwt -> jwt
|
||||
.jwtAuthenticationConverter(grantedAuthoritiesExtractor())
|
||||
)
|
||||
);
|
||||
return http.build();
|
||||
}
|
||||
|
||||
Converter<Jwt, Mono<AbstractAuthenticationToken>> grantedAuthoritiesExtractor() {
|
||||
JwtAuthenticationConverter jwtAuthenticationConverter =
|
||||
new JwtAuthenticationConverter();
|
||||
jwtAuthenticationConverter.setJwtGrantedAuthoritiesConverter
|
||||
(new GrantedAuthoritiesExtractor());
|
||||
return new ReactiveJwtAuthenticationConverterAdapter(jwtAuthenticationConverter);
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
jwt {
|
||||
jwtAuthenticationConverter = grantedAuthoritiesExtractor()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fun grantedAuthoritiesExtractor(): Converter<Jwt, Mono<AbstractAuthenticationToken>> {
|
||||
val jwtAuthenticationConverter = JwtAuthenticationConverter()
|
||||
jwtAuthenticationConverter.setJwtGrantedAuthoritiesConverter(GrantedAuthoritiesExtractor())
|
||||
return ReactiveJwtAuthenticationConverterAdapter(jwtAuthenticationConverter)
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
which is responsible for converting a `Jwt` into an `Authentication`.
|
||||
As part of its configuration, we can supply a subsidiary converter to go from `Jwt` to a `Collection` of granted authorities.
|
||||
|
||||
That final converter might be something like `GrantedAuthoritiesExtractor` below:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
static class GrantedAuthoritiesExtractor
|
||||
implements Converter<Jwt, Collection<GrantedAuthority>> {
|
||||
|
||||
public Collection<GrantedAuthority> convert(Jwt jwt) {
|
||||
Collection<?> authorities = (Collection<?>)
|
||||
jwt.getClaims().getOrDefault("mycustomclaim", Collections.emptyList());
|
||||
|
||||
return authorities.stream()
|
||||
.map(Object::toString)
|
||||
.map(SimpleGrantedAuthority::new)
|
||||
.collect(Collectors.toList());
|
||||
}
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
internal class GrantedAuthoritiesExtractor : Converter<Jwt, Collection<GrantedAuthority>> {
|
||||
override fun convert(jwt: Jwt): Collection<GrantedAuthority> {
|
||||
val authorities: List<Any> = jwt.claims
|
||||
.getOrDefault("mycustomclaim", emptyList<Any>()) as List<Any>
|
||||
return authorities
|
||||
.map { it.toString() }
|
||||
.map { SimpleGrantedAuthority(it) }
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
For more flexibility, the DSL supports entirely replacing the converter with any class that implements `Converter<Jwt, Mono<AbstractAuthenticationToken>>`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
static class CustomAuthenticationConverter implements Converter<Jwt, Mono<AbstractAuthenticationToken>> {
|
||||
public AbstractAuthenticationToken convert(Jwt jwt) {
|
||||
return Mono.just(jwt).map(this::doConversion);
|
||||
}
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
internal class CustomAuthenticationConverter : Converter<Jwt, Mono<AbstractAuthenticationToken>> {
|
||||
override fun convert(jwt: Jwt): Mono<AbstractAuthenticationToken> {
|
||||
return Mono.just(jwt).map(this::doConversion)
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-validation]]
|
||||
=== Configuring Validation
|
||||
|
||||
Using <<webflux-oauth2resourceserver-jwt-minimalconfiguration,minimal Spring Boot configuration>>, indicating the authorization server's issuer uri, Resource Server will default to verifying the `iss` claim as well as the `exp` and `nbf` timestamp claims.
|
||||
|
||||
In circumstances where validation needs to be customized, Resource Server ships with two standard validators and also accepts custom `OAuth2TokenValidator` instances.
|
||||
|
||||
[[webflux-oauth2resourceserver-jwt-validation-clockskew]]
|
||||
==== Customizing Timestamp Validation
|
||||
|
||||
JWT's typically have a window of validity, with the start of the window indicated in the `nbf` claim and the end indicated in the `exp` claim.
|
||||
|
||||
However, every server can experience clock drift, which can cause tokens to appear expired to one server, but not to another.
|
||||
This can cause some implementation heartburn as the number of collaborating servers increases in a distributed system.
|
||||
|
||||
Resource Server uses `JwtTimestampValidator` to verify a token's validity window, and it can be configured with a `clockSkew` to alleviate the above problem:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
ReactiveJwtDecoder jwtDecoder() {
|
||||
NimbusReactiveJwtDecoder jwtDecoder = (NimbusReactiveJwtDecoder)
|
||||
ReactiveJwtDecoders.fromIssuerLocation(issuerUri);
|
||||
|
||||
OAuth2TokenValidator<Jwt> withClockSkew = new DelegatingOAuth2TokenValidator<>(
|
||||
new JwtTimestampValidator(Duration.ofSeconds(60)),
|
||||
new IssuerValidator(issuerUri));
|
||||
|
||||
jwtDecoder.setJwtValidator(withClockSkew);
|
||||
|
||||
return jwtDecoder;
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun jwtDecoder(): ReactiveJwtDecoder {
|
||||
val jwtDecoder = ReactiveJwtDecoders.fromIssuerLocation(issuerUri) as NimbusReactiveJwtDecoder
|
||||
val withClockSkew: OAuth2TokenValidator<Jwt> = DelegatingOAuth2TokenValidator(
|
||||
JwtTimestampValidator(Duration.ofSeconds(60)),
|
||||
JwtIssuerValidator(issuerUri))
|
||||
jwtDecoder.setJwtValidator(withClockSkew)
|
||||
return jwtDecoder
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
[NOTE]
|
||||
By default, Resource Server configures a clock skew of 60 seconds.
|
||||
|
||||
[[webflux-oauth2resourceserver-validation-custom]]
|
||||
==== Configuring a Custom Validator
|
||||
|
||||
Adding a check for the `aud` claim is simple with the `OAuth2TokenValidator` API:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
public class AudienceValidator implements OAuth2TokenValidator<Jwt> {
|
||||
OAuth2Error error = new OAuth2Error("invalid_token", "The required audience is missing", null);
|
||||
|
||||
public OAuth2TokenValidatorResult validate(Jwt jwt) {
|
||||
if (jwt.getAudience().contains("messaging")) {
|
||||
return OAuth2TokenValidatorResult.success();
|
||||
} else {
|
||||
return OAuth2TokenValidatorResult.failure(error);
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
class AudienceValidator : OAuth2TokenValidator<Jwt> {
|
||||
var error: OAuth2Error = OAuth2Error("invalid_token", "The required audience is missing", null)
|
||||
override fun validate(jwt: Jwt): OAuth2TokenValidatorResult {
|
||||
return if (jwt.audience.contains("messaging")) {
|
||||
OAuth2TokenValidatorResult.success()
|
||||
} else {
|
||||
OAuth2TokenValidatorResult.failure(error)
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Then, to add into a resource server, it's a matter of specifying the `ReactiveJwtDecoder` instance:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
ReactiveJwtDecoder jwtDecoder() {
|
||||
NimbusReactiveJwtDecoder jwtDecoder = (NimbusReactiveJwtDecoder)
|
||||
ReactiveJwtDecoders.fromIssuerLocation(issuerUri);
|
||||
|
||||
OAuth2TokenValidator<Jwt> audienceValidator = new AudienceValidator();
|
||||
OAuth2TokenValidator<Jwt> withIssuer = JwtValidators.createDefaultWithIssuer(issuerUri);
|
||||
OAuth2TokenValidator<Jwt> withAudience = new DelegatingOAuth2TokenValidator<>(withIssuer, audienceValidator);
|
||||
|
||||
jwtDecoder.setJwtValidator(withAudience);
|
||||
|
||||
return jwtDecoder;
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun jwtDecoder(): ReactiveJwtDecoder {
|
||||
val jwtDecoder = ReactiveJwtDecoders.fromIssuerLocation(issuerUri) as NimbusReactiveJwtDecoder
|
||||
val audienceValidator: OAuth2TokenValidator<Jwt> = AudienceValidator()
|
||||
val withIssuer: OAuth2TokenValidator<Jwt> = JwtValidators.createDefaultWithIssuer(issuerUri)
|
||||
val withAudience: OAuth2TokenValidator<Jwt> = DelegatingOAuth2TokenValidator(withIssuer, audienceValidator)
|
||||
jwtDecoder.setJwtValidator(withAudience)
|
||||
return jwtDecoder
|
||||
}
|
||||
----
|
||||
====
|
|
@ -0,0 +1,117 @@
|
|||
= OAuth 2.0 Resource Server Multitenancy
|
||||
|
||||
[[webflux-oauth2resourceserver-multitenancy]]
|
||||
== Multi-tenancy
|
||||
|
||||
A resource server is considered multi-tenant when there are multiple strategies for verifying a bearer token, keyed by some tenant identifier.
|
||||
|
||||
For example, your resource server may accept bearer tokens from two different authorization servers.
|
||||
Or, your authorization server may represent a multiplicity of issuers.
|
||||
|
||||
In each case, there are two things that need to be done and trade-offs associated with how you choose to do them:
|
||||
|
||||
1. Resolve the tenant
|
||||
2. Propagate the tenant
|
||||
|
||||
=== Resolving the Tenant By Claim
|
||||
|
||||
One way to differentiate tenants is by the issuer claim. Since the issuer claim accompanies signed JWTs, this can be done with the `JwtIssuerReactiveAuthenticationManagerResolver`, like so:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
JwtIssuerReactiveAuthenticationManagerResolver authenticationManagerResolver = new JwtIssuerReactiveAuthenticationManagerResolver
|
||||
("https://idp.example.org/issuerOne", "https://idp.example.org/issuerTwo");
|
||||
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(oauth2 -> oauth2
|
||||
.authenticationManagerResolver(authenticationManagerResolver)
|
||||
);
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
val customAuthenticationManagerResolver = JwtIssuerReactiveAuthenticationManagerResolver("https://idp.example.org/issuerOne", "https://idp.example.org/issuerTwo")
|
||||
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
authenticationManagerResolver = customAuthenticationManagerResolver
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
This is nice because the issuer endpoints are loaded lazily.
|
||||
In fact, the corresponding `JwtReactiveAuthenticationManager` is instantiated only when the first request with the corresponding issuer is sent.
|
||||
This allows for an application startup that is independent from those authorization servers being up and available.
|
||||
|
||||
==== Dynamic Tenants
|
||||
|
||||
Of course, you may not want to restart the application each time a new tenant is added.
|
||||
In this case, you can configure the `JwtIssuerReactiveAuthenticationManagerResolver` with a repository of `ReactiveAuthenticationManager` instances, which you can edit at runtime, like so:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
private Mono<ReactiveAuthenticationManager> addManager(
|
||||
Map<String, ReactiveAuthenticationManager> authenticationManagers, String issuer) {
|
||||
|
||||
return Mono.fromCallable(() -> ReactiveJwtDecoders.fromIssuerLocation(issuer))
|
||||
.subscribeOn(Schedulers.boundedElastic())
|
||||
.map(JwtReactiveAuthenticationManager::new)
|
||||
.doOnNext(authenticationManager -> authenticationManagers.put(issuer, authenticationManager));
|
||||
}
|
||||
|
||||
// ...
|
||||
|
||||
JwtIssuerReactiveAuthenticationManagerResolver authenticationManagerResolver =
|
||||
new JwtIssuerReactiveAuthenticationManagerResolver(authenticationManagers::get);
|
||||
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(oauth2 -> oauth2
|
||||
.authenticationManagerResolver(authenticationManagerResolver)
|
||||
);
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
private fun addManager(
|
||||
authenticationManagers: MutableMap<String, ReactiveAuthenticationManager>, issuer: String): Mono<JwtReactiveAuthenticationManager> {
|
||||
return Mono.fromCallable { ReactiveJwtDecoders.fromIssuerLocation(issuer) }
|
||||
.subscribeOn(Schedulers.boundedElastic())
|
||||
.map { jwtDecoder: ReactiveJwtDecoder -> JwtReactiveAuthenticationManager(jwtDecoder) }
|
||||
.doOnNext { authenticationManager: JwtReactiveAuthenticationManager -> authenticationManagers[issuer] = authenticationManager }
|
||||
}
|
||||
|
||||
// ...
|
||||
|
||||
var customAuthenticationManagerResolver = JwtIssuerReactiveAuthenticationManagerResolver(authenticationManagers::get)
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
authenticationManagerResolver = customAuthenticationManagerResolver
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
In this case, you construct `JwtIssuerReactiveAuthenticationManagerResolver` with a strategy for obtaining the `ReactiveAuthenticationManager` given the issuer.
|
||||
This approach allows us to add and remove elements from the repository (shown as a `Map` in the snippet) at runtime.
|
||||
|
||||
NOTE: It would be unsafe to simply take any issuer and construct an `ReactiveAuthenticationManager` from it.
|
||||
The issuer should be one that the code can verify from a trusted source like an allowed list of issuers.
|
|
@ -0,0 +1,775 @@
|
|||
= OAuth 2.0 Resource Server Opaque Token
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-minimaldependencies]]
|
||||
== Minimal Dependencies for Introspection
|
||||
As described in xref:servlet/oauth2/resource-server/jwt.adoc#oauth2resourceserver-jwt-minimaldependencies[Minimal Dependencies for JWT] most of Resource Server support is collected in `spring-security-oauth2-resource-server`.
|
||||
However unless a custom <<webflux-oauth2resourceserver-opaque-introspector-bean,`ReactiveOpaqueTokenIntrospector`>> is provided, the Resource Server will fallback to ReactiveOpaqueTokenIntrospector.
|
||||
Meaning that both `spring-security-oauth2-resource-server` and `oauth2-oidc-sdk` are necessary in order to have a working minimal Resource Server that supports opaque Bearer Tokens.
|
||||
Please refer to `spring-security-oauth2-resource-server` in order to determin the correct version for `oauth2-oidc-sdk`.
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-minimalconfiguration]]
|
||||
== Minimal Configuration for Introspection
|
||||
|
||||
Typically, an opaque token can be verified via an https://tools.ietf.org/html/rfc7662[OAuth 2.0 Introspection Endpoint], hosted by the authorization server.
|
||||
This can be handy when revocation is a requirement.
|
||||
|
||||
When using https://spring.io/projects/spring-boot[Spring Boot], configuring an application as a resource server that uses introspection consists of two basic steps.
|
||||
First, include the needed dependencies and second, indicate the introspection endpoint details.
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-introspectionuri]]
|
||||
=== Specifying the Authorization Server
|
||||
|
||||
To specify where the introspection endpoint is, simply do:
|
||||
|
||||
[source,yaml]
|
||||
----
|
||||
security:
|
||||
oauth2:
|
||||
resourceserver:
|
||||
opaque-token:
|
||||
introspection-uri: https://idp.example.com/introspect
|
||||
client-id: client
|
||||
client-secret: secret
|
||||
----
|
||||
|
||||
Where `https://idp.example.com/introspect` is the introspection endpoint hosted by your authorization server and `client-id` and `client-secret` are the credentials needed to hit that endpoint.
|
||||
|
||||
Resource Server will use these properties to further self-configure and subsequently validate incoming JWTs.
|
||||
|
||||
[NOTE]
|
||||
When using introspection, the authorization server's word is the law.
|
||||
If the authorization server responses that the token is valid, then it is.
|
||||
|
||||
And that's it!
|
||||
|
||||
=== Startup Expectations
|
||||
|
||||
When this property and these dependencies are used, Resource Server will automatically configure itself to validate Opaque Bearer Tokens.
|
||||
|
||||
This startup process is quite a bit simpler than for JWTs since no endpoints need to be discovered and no additional validation rules get added.
|
||||
|
||||
=== Runtime Expectations
|
||||
|
||||
Once the application is started up, Resource Server will attempt to process any request containing an `Authorization: Bearer` header:
|
||||
|
||||
[source,http]
|
||||
----
|
||||
GET / HTTP/1.1
|
||||
Authorization: Bearer some-token-value # Resource Server will process this
|
||||
----
|
||||
|
||||
So long as this scheme is indicated, Resource Server will attempt to process the request according to the Bearer Token specification.
|
||||
|
||||
Given an Opaque Token, Resource Server will
|
||||
|
||||
1. Query the provided introspection endpoint using the provided credentials and the token
|
||||
2. Inspect the response for an `{ 'active' : true }` attribute
|
||||
3. Map each scope to an authority with the prefix `SCOPE_`
|
||||
|
||||
The resulting `Authentication#getPrincipal`, by default, is a Spring Security `{security-api-url}org/springframework/security/oauth2/core/OAuth2AuthenticatedPrincipal.html[OAuth2AuthenticatedPrincipal]` object, and `Authentication#getName` maps to the token's `sub` property, if one is present.
|
||||
|
||||
From here, you may want to jump to:
|
||||
|
||||
* <<webflux-oauth2resourceserver-opaque-attributes,Looking Up Attributes Post-Authentication>>
|
||||
* <<webflux-oauth2resourceserver-opaque-authorization-extraction,Extracting Authorities Manually>>
|
||||
* <<webflux-oauth2resourceserver-opaque-jwt-introspector,Using Introspection with JWTs>>
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-attributes]]
|
||||
== Looking Up Attributes Post-Authentication
|
||||
|
||||
Once a token is authenticated, an instance of `BearerTokenAuthentication` is set in the `SecurityContext`.
|
||||
|
||||
This means that it's available in `@Controller` methods when using `@EnableWebFlux` in your configuration:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@GetMapping("/foo")
|
||||
public Mono<String> foo(BearerTokenAuthentication authentication) {
|
||||
return Mono.just(authentication.getTokenAttributes().get("sub") + " is the subject");
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@GetMapping("/foo")
|
||||
fun foo(authentication: BearerTokenAuthentication): Mono<String> {
|
||||
return Mono.just(authentication.tokenAttributes["sub"].toString() + " is the subject")
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Since `BearerTokenAuthentication` holds an `OAuth2AuthenticatedPrincipal`, that also means that it's available to controller methods, too:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@GetMapping("/foo")
|
||||
public Mono<String> foo(@AuthenticationPrincipal OAuth2AuthenticatedPrincipal principal) {
|
||||
return Mono.just(principal.getAttribute("sub") + " is the subject");
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@GetMapping("/foo")
|
||||
fun foo(@AuthenticationPrincipal principal: OAuth2AuthenticatedPrincipal): Mono<String> {
|
||||
return Mono.just(principal.getAttribute<Any>("sub").toString() + " is the subject")
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
=== Looking Up Attributes Via SpEL
|
||||
|
||||
Of course, this also means that attributes can be accessed via SpEL.
|
||||
|
||||
For example, if using `@EnableReactiveMethodSecurity` so that you can use `@PreAuthorize` annotations, you can do:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@PreAuthorize("principal?.attributes['sub'] = 'foo'")
|
||||
public Mono<String> forFoosEyesOnly() {
|
||||
return Mono.just("foo");
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@PreAuthorize("principal.attributes['sub'] = 'foo'")
|
||||
fun forFoosEyesOnly(): Mono<String> {
|
||||
return Mono.just("foo")
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-sansboot]]
|
||||
== Overriding or Replacing Boot Auto Configuration
|
||||
|
||||
There are two ``@Bean``s that Spring Boot generates on Resource Server's behalf.
|
||||
|
||||
The first is a `SecurityWebFilterChain` that configures the app as a resource server.
|
||||
When use Opaque Token, this `SecurityWebFilterChain` looks like:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(ServerHttpSecurity.OAuth2ResourceServerSpec::opaqueToken)
|
||||
return http.build();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
opaqueToken { }
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
If the application doesn't expose a `SecurityWebFilterChain` bean, then Spring Boot will expose the above default one.
|
||||
|
||||
Replacing this is as simple as exposing the bean within the application:
|
||||
|
||||
.Replacing SecurityWebFilterChain
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@EnableWebFluxSecurity
|
||||
public class MyCustomSecurityConfiguration {
|
||||
@Bean
|
||||
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.pathMatchers("/messages/**").hasAuthority("SCOPE_message:read")
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(oauth2 -> oauth2
|
||||
.opaqueToken(opaqueToken -> opaqueToken
|
||||
.introspector(myIntrospector())
|
||||
)
|
||||
);
|
||||
return http.build();
|
||||
}
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize("/messages/**", hasAuthority("SCOPE_message:read"))
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
opaqueToken {
|
||||
introspector = myIntrospector()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
The above requires the scope of `message:read` for any URL that starts with `/messages/`.
|
||||
|
||||
Methods on the `oauth2ResourceServer` DSL will also override or replace auto configuration.
|
||||
|
||||
For example, the second `@Bean` Spring Boot creates is a `ReactiveOpaqueTokenIntrospector`, which decodes `String` tokens into validated instances of `OAuth2AuthenticatedPrincipal`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
public ReactiveOpaqueTokenIntrospector introspector() {
|
||||
return new NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret);
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun introspector(): ReactiveOpaqueTokenIntrospector {
|
||||
return NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret)
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
If the application doesn't expose a `ReactiveOpaqueTokenIntrospector` bean, then Spring Boot will expose the above default one.
|
||||
|
||||
And its configuration can be overridden using `introspectionUri()` and `introspectionClientCredentials()` or replaced using `introspector()`.
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-introspectionuri-dsl]]
|
||||
=== Using `introspectionUri()`
|
||||
|
||||
An authorization server's Introspection Uri can be configured <<webflux-oauth2resourceserver-opaque-introspectionuri,as a configuration property>> or it can be supplied in the DSL:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@EnableWebFluxSecurity
|
||||
public class DirectlyConfiguredIntrospectionUri {
|
||||
@Bean
|
||||
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(oauth2 -> oauth2
|
||||
.opaqueToken(opaqueToken -> opaqueToken
|
||||
.introspectionUri("https://idp.example.com/introspect")
|
||||
.introspectionClientCredentials("client", "secret")
|
||||
)
|
||||
);
|
||||
return http.build();
|
||||
}
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
opaqueToken {
|
||||
introspectionUri = "https://idp.example.com/introspect"
|
||||
introspectionClientCredentials("client", "secret")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Using `introspectionUri()` takes precedence over any configuration property.
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-introspector-dsl]]
|
||||
=== Using `introspector()`
|
||||
|
||||
More powerful than `introspectionUri()` is `introspector()`, which will completely replace any Boot auto configuration of `ReactiveOpaqueTokenIntrospector`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@EnableWebFluxSecurity
|
||||
public class DirectlyConfiguredIntrospector {
|
||||
@Bean
|
||||
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
|
||||
http
|
||||
.authorizeExchange(exchanges -> exchanges
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(oauth2 -> oauth2
|
||||
.opaqueToken(opaqueToken -> opaqueToken
|
||||
.introspector(myCustomIntrospector())
|
||||
)
|
||||
);
|
||||
return http.build();
|
||||
}
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
opaqueToken {
|
||||
introspector = myCustomIntrospector()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
This is handy when deeper configuration, like <<webflux-oauth2resourceserver-opaque-authorization-extraction,authority mapping>>or <<webflux-oauth2resourceserver-opaque-jwt-introspector,JWT revocation>> is necessary.
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-introspector-bean]]
|
||||
=== Exposing a `ReactiveOpaqueTokenIntrospector` `@Bean`
|
||||
|
||||
Or, exposing a `ReactiveOpaqueTokenIntrospector` `@Bean` has the same effect as `introspector()`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
public ReactiveOpaqueTokenIntrospector introspector() {
|
||||
return new NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret);
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun introspector(): ReactiveOpaqueTokenIntrospector {
|
||||
return NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret)
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-authorization]]
|
||||
== Configuring Authorization
|
||||
|
||||
An OAuth 2.0 Introspection endpoint will typically return a `scope` attribute, indicating the scopes (or authorities) it's been granted, for example:
|
||||
|
||||
`{ ..., "scope" : "messages contacts"}`
|
||||
|
||||
When this is the case, Resource Server will attempt to coerce these scopes into a list of granted authorities, prefixing each scope with the string "SCOPE_".
|
||||
|
||||
This means that to protect an endpoint or method with a scope derived from an Opaque Token, the corresponding expressions should include this prefix:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@EnableWebFluxSecurity
|
||||
public class MappedAuthorities {
|
||||
@Bean
|
||||
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
|
||||
http
|
||||
.authorizeExchange(exchange -> exchange
|
||||
.pathMatchers("/contacts/**").hasAuthority("SCOPE_contacts")
|
||||
.pathMatchers("/messages/**").hasAuthority("SCOPE_messages")
|
||||
.anyExchange().authenticated()
|
||||
)
|
||||
.oauth2ResourceServer(ServerHttpSecurity.OAuth2ResourceServerSpec::opaqueToken);
|
||||
return http.build();
|
||||
}
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
|
||||
return http {
|
||||
authorizeExchange {
|
||||
authorize("/contacts/**", hasAuthority("SCOPE_contacts"))
|
||||
authorize("/messages/**", hasAuthority("SCOPE_messages"))
|
||||
authorize(anyExchange, authenticated)
|
||||
}
|
||||
oauth2ResourceServer {
|
||||
opaqueToken { }
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Or similarly with method security:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@PreAuthorize("hasAuthority('SCOPE_messages')")
|
||||
public Flux<Message> getMessages(...) {}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@PreAuthorize("hasAuthority('SCOPE_messages')")
|
||||
fun getMessages(): Flux<Message> { }
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-authorization-extraction]]
|
||||
=== Extracting Authorities Manually
|
||||
|
||||
By default, Opaque Token support will extract the scope claim from an introspection response and parse it into individual `GrantedAuthority` instances.
|
||||
|
||||
For example, if the introspection response were:
|
||||
|
||||
[source,json]
|
||||
----
|
||||
{
|
||||
"active" : true,
|
||||
"scope" : "message:read message:write"
|
||||
}
|
||||
----
|
||||
|
||||
Then Resource Server would generate an `Authentication` with two authorities, one for `message:read` and the other for `message:write`.
|
||||
|
||||
This can, of course, be customized using a custom `ReactiveOpaqueTokenIntrospector` that takes a look at the attribute set and converts in its own way:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
public class CustomAuthoritiesOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector {
|
||||
private ReactiveOpaqueTokenIntrospector delegate =
|
||||
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");
|
||||
|
||||
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) {
|
||||
return this.delegate.introspect(token)
|
||||
.map(principal -> new DefaultOAuth2AuthenticatedPrincipal(
|
||||
principal.getName(), principal.getAttributes(), extractAuthorities(principal)));
|
||||
}
|
||||
|
||||
private Collection<GrantedAuthority> extractAuthorities(OAuth2AuthenticatedPrincipal principal) {
|
||||
List<String> scopes = principal.getAttribute(OAuth2IntrospectionClaimNames.SCOPE);
|
||||
return scopes.stream()
|
||||
.map(SimpleGrantedAuthority::new)
|
||||
.collect(Collectors.toList());
|
||||
}
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
class CustomAuthoritiesOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector {
|
||||
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret")
|
||||
override fun introspect(token: String): Mono<OAuth2AuthenticatedPrincipal> {
|
||||
return delegate.introspect(token)
|
||||
.map { principal: OAuth2AuthenticatedPrincipal ->
|
||||
DefaultOAuth2AuthenticatedPrincipal(
|
||||
principal.name, principal.attributes, extractAuthorities(principal))
|
||||
}
|
||||
}
|
||||
|
||||
private fun extractAuthorities(principal: OAuth2AuthenticatedPrincipal): Collection<GrantedAuthority> {
|
||||
val scopes = principal.getAttribute<List<String>>(OAuth2IntrospectionClaimNames.SCOPE)
|
||||
return scopes
|
||||
.map { SimpleGrantedAuthority(it) }
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Thereafter, this custom introspector can be configured simply by exposing it as a `@Bean`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
public ReactiveOpaqueTokenIntrospector introspector() {
|
||||
return new CustomAuthoritiesOpaqueTokenIntrospector();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun introspector(): ReactiveOpaqueTokenIntrospector {
|
||||
return CustomAuthoritiesOpaqueTokenIntrospector()
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-jwt-introspector]]
|
||||
== Using Introspection with JWTs
|
||||
|
||||
A common question is whether or not introspection is compatible with JWTs.
|
||||
Spring Security's Opaque Token support has been designed to not care about the format of the token -- it will gladly pass any token to the introspection endpoint provided.
|
||||
|
||||
So, let's say that you've got a requirement that requires you to check with the authorization server on each request, in case the JWT has been revoked.
|
||||
|
||||
Even though you are using the JWT format for the token, your validation method is introspection, meaning you'd want to do:
|
||||
|
||||
[source,yaml]
|
||||
----
|
||||
spring:
|
||||
security:
|
||||
oauth2:
|
||||
resourceserver:
|
||||
opaque-token:
|
||||
introspection-uri: https://idp.example.org/introspection
|
||||
client-id: client
|
||||
client-secret: secret
|
||||
----
|
||||
|
||||
In this case, the resulting `Authentication` would be `BearerTokenAuthentication`.
|
||||
Any attributes in the corresponding `OAuth2AuthenticatedPrincipal` would be whatever was returned by the introspection endpoint.
|
||||
|
||||
But, let's say that, oddly enough, the introspection endpoint only returns whether or not the token is active.
|
||||
Now what?
|
||||
|
||||
In this case, you can create a custom `ReactiveOpaqueTokenIntrospector` that still hits the endpoint, but then updates the returned principal to have the JWTs claims as the attributes:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
public class JwtOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector {
|
||||
private ReactiveOpaqueTokenIntrospector delegate =
|
||||
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");
|
||||
private ReactiveJwtDecoder jwtDecoder = new NimbusReactiveJwtDecoder(new ParseOnlyJWTProcessor());
|
||||
|
||||
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) {
|
||||
return this.delegate.introspect(token)
|
||||
.flatMap(principal -> this.jwtDecoder.decode(token))
|
||||
.map(jwt -> new DefaultOAuth2AuthenticatedPrincipal(jwt.getClaims(), NO_AUTHORITIES));
|
||||
}
|
||||
|
||||
private static class ParseOnlyJWTProcessor implements Converter<JWT, Mono<JWTClaimsSet>> {
|
||||
public Mono<JWTClaimsSet> convert(JWT jwt) {
|
||||
try {
|
||||
return Mono.just(jwt.getJWTClaimsSet());
|
||||
} catch (Exception ex) {
|
||||
return Mono.error(ex);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
class JwtOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector {
|
||||
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret")
|
||||
private val jwtDecoder: ReactiveJwtDecoder = NimbusReactiveJwtDecoder(ParseOnlyJWTProcessor())
|
||||
override fun introspect(token: String): Mono<OAuth2AuthenticatedPrincipal> {
|
||||
return delegate.introspect(token)
|
||||
.flatMap { jwtDecoder.decode(token) }
|
||||
.map { jwt: Jwt -> DefaultOAuth2AuthenticatedPrincipal(jwt.claims, NO_AUTHORITIES) }
|
||||
}
|
||||
|
||||
private class ParseOnlyJWTProcessor : Converter<JWT, Mono<JWTClaimsSet>> {
|
||||
override fun convert(jwt: JWT): Mono<JWTClaimsSet> {
|
||||
return try {
|
||||
Mono.just(jwt.jwtClaimsSet)
|
||||
} catch (e: Exception) {
|
||||
Mono.error(e)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Thereafter, this custom introspector can be configured simply by exposing it as a `@Bean`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
public ReactiveOpaqueTokenIntrospector introspector() {
|
||||
return new JwtOpaqueTokenIntropsector();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun introspector(): ReactiveOpaqueTokenIntrospector {
|
||||
return JwtOpaqueTokenIntrospector()
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
[[webflux-oauth2resourceserver-opaque-userinfo]]
|
||||
== Calling a `/userinfo` Endpoint
|
||||
|
||||
Generally speaking, a Resource Server doesn't care about the underlying user, but instead about the authorities that have been granted.
|
||||
|
||||
That said, at times it can be valuable to tie the authorization statement back to a user.
|
||||
|
||||
If an application is also using `spring-security-oauth2-client`, having set up the appropriate `ClientRegistrationRepository`, then this is quite simple with a custom `OpaqueTokenIntrospector`.
|
||||
This implementation below does three things:
|
||||
|
||||
* Delegates to the introspection endpoint, to affirm the token's validity
|
||||
* Looks up the appropriate client registration associated with the `/userinfo` endpoint
|
||||
* Invokes and returns the response from the `/userinfo` endpoint
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
public class UserInfoOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector {
|
||||
private final ReactiveOpaqueTokenIntrospector delegate =
|
||||
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");
|
||||
private final ReactiveOAuth2UserService<OAuth2UserRequest, OAuth2User> oauth2UserService =
|
||||
new DefaultReactiveOAuth2UserService();
|
||||
|
||||
private final ReactiveClientRegistrationRepository repository;
|
||||
|
||||
// ... constructor
|
||||
|
||||
@Override
|
||||
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) {
|
||||
return Mono.zip(this.delegate.introspect(token), this.repository.findByRegistrationId("registration-id"))
|
||||
.map(t -> {
|
||||
OAuth2AuthenticatedPrincipal authorized = t.getT1();
|
||||
ClientRegistration clientRegistration = t.getT2();
|
||||
Instant issuedAt = authorized.getAttribute(ISSUED_AT);
|
||||
Instant expiresAt = authorized.getAttribute(OAuth2IntrospectionClaimNames.EXPIRES_AT);
|
||||
OAuth2AccessToken accessToken = new OAuth2AccessToken(BEARER, token, issuedAt, expiresAt);
|
||||
return new OAuth2UserRequest(clientRegistration, accessToken);
|
||||
})
|
||||
.flatMap(this.oauth2UserService::loadUser);
|
||||
}
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
class UserInfoOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector {
|
||||
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret")
|
||||
private val oauth2UserService: ReactiveOAuth2UserService<OAuth2UserRequest, OAuth2User> = DefaultReactiveOAuth2UserService()
|
||||
private val repository: ReactiveClientRegistrationRepository? = null
|
||||
|
||||
// ... constructor
|
||||
override fun introspect(token: String?): Mono<OAuth2AuthenticatedPrincipal> {
|
||||
return Mono.zip<OAuth2AuthenticatedPrincipal, ClientRegistration>(delegate.introspect(token), repository!!.findByRegistrationId("registration-id"))
|
||||
.map<OAuth2UserRequest> { t: Tuple2<OAuth2AuthenticatedPrincipal, ClientRegistration> ->
|
||||
val authorized = t.t1
|
||||
val clientRegistration = t.t2
|
||||
val issuedAt: Instant? = authorized.getAttribute(ISSUED_AT)
|
||||
val expiresAt: Instant? = authorized.getAttribute(OAuth2IntrospectionClaimNames.EXPIRES_AT)
|
||||
val accessToken = OAuth2AccessToken(BEARER, token, issuedAt, expiresAt)
|
||||
OAuth2UserRequest(clientRegistration, accessToken)
|
||||
}
|
||||
.flatMap { userRequest: OAuth2UserRequest -> oauth2UserService.loadUser(userRequest) }
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
If you aren't using `spring-security-oauth2-client`, it's still quite simple.
|
||||
You will simply need to invoke the `/userinfo` with your own instance of `WebClient`:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
public class UserInfoOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector {
|
||||
private final ReactiveOpaqueTokenIntrospector delegate =
|
||||
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");
|
||||
private final WebClient rest = WebClient.create();
|
||||
|
||||
@Override
|
||||
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) {
|
||||
return this.delegate.introspect(token)
|
||||
.map(this::makeUserInfoRequest);
|
||||
}
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
class UserInfoOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector {
|
||||
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret")
|
||||
private val rest: WebClient = WebClient.create()
|
||||
|
||||
override fun introspect(token: String): Mono<OAuth2AuthenticatedPrincipal> {
|
||||
return delegate.introspect(token)
|
||||
.map(this::makeUserInfoRequest)
|
||||
}
|
||||
}
|
||||
----
|
||||
====
|
||||
|
||||
Either way, having created your `ReactiveOpaqueTokenIntrospector`, you should publish it as a `@Bean` to override the defaults:
|
||||
|
||||
====
|
||||
.Java
|
||||
[source,java,role="primary"]
|
||||
----
|
||||
@Bean
|
||||
ReactiveOpaqueTokenIntrospector introspector() {
|
||||
return new UserInfoOpaqueTokenIntrospector();
|
||||
}
|
||||
----
|
||||
|
||||
.Kotlin
|
||||
[source,kotlin,role="secondary"]
|
||||
----
|
||||
@Bean
|
||||
fun introspector(): ReactiveOpaqueTokenIntrospector {
|
||||
return UserInfoOpaqueTokenIntrospector()
|
||||
}
|
||||
----
|
||||
====
|
Loading…
Reference in New Issue