[[rsocket]] = RSocket Security Spring Security's RSocket support relies on a `SocketAcceptorInterceptor`. The main entry point into security is in `PayloadSocketAcceptorInterceptor`, which adapts the RSocket APIs to allow intercepting a `PayloadExchange` with `PayloadInterceptor` implementations. The following example shows a minimal RSocket Security configuration: * Hello RSocket {gh-samples-url}/reactive/rsocket/hello-security[hellorsocket] * https://github.com/rwinch/spring-flights/tree/security[Spring Flights] == Minimal RSocket Security Configuration You can find a minimal RSocket Security configuration below: [tabs] ====== Java:: + [source,java,role="primary"] ---- @Configuration @EnableRSocketSecurity public class HelloRSocketSecurityConfig { @Bean public MapReactiveUserDetailsService userDetailsService() { UserDetails user = User.withDefaultPasswordEncoder() .username("user") .password("user") .roles("USER") .build(); return new MapReactiveUserDetailsService(user); } } ---- Kotlin:: + [source,kotlin,role="secondary"] ---- @Configuration @EnableRSocketSecurity open class HelloRSocketSecurityConfig { @Bean open fun userDetailsService(): MapReactiveUserDetailsService { val user = User.withDefaultPasswordEncoder() .username("user") .password("user") .roles("USER") .build() return MapReactiveUserDetailsService(user) } } ---- ====== This configuration enables <> and sets up <> to require an authenticated user for any request. == Adding SecuritySocketAcceptorInterceptor For Spring Security to work, we need to apply `SecuritySocketAcceptorInterceptor` to the `ServerRSocketFactory`. Doing so connects our `PayloadSocketAcceptorInterceptor` with the RSocket infrastructure. Spring Boot registers it automatically in `RSocketSecurityAutoConfiguration` when you include {gh-samples-url}/reactive/rsocket/hello-security/build.gradle[the correct dependencies]. Or, if you are not using Boot's auto-configuration, you can register it manually in the following way: [tabs] ====== Java:: + [source,java,role="primary"] ---- @Bean RSocketServerCustomizer springSecurityRSocketSecurity(SecuritySocketAcceptorInterceptor interceptor) { return (server) -> server.interceptors((registry) -> registry.forSocketAcceptor(interceptor)); } ---- Kotlin:: + [source,kotlin,role="secondary"] ---- @Bean fun springSecurityRSocketSecurity(interceptor: SecuritySocketAcceptorInterceptor): RSocketServerCustomizer { return RSocketServerCustomizer { server -> server.interceptors { registry -> registry.forSocketAcceptor(interceptor) } } } ---- ====== To customize the interceptor itself, use `RSocketSecurity` to add <> and <>. [[rsocket-authentication]] == RSocket Authentication RSocket authentication is performed with `AuthenticationPayloadInterceptor`, which acts as a controller to invoke a `ReactiveAuthenticationManager` instance. [[rsocket-authentication-setup-vs-request]] === Authentication at Setup versus Request Time Generally, authentication can occur at setup time or at request time or both. Authentication at setup time makes sense in a few scenarios. A common scenarios is when a single user (such as a mobile connection) uses an RSocket connection. In this case, only a single user uses the connection, so authentication can be done once at connection time. In a scenario where the RSocket connection is shared, it makes sense to send credentials on each request. For example, a web application that connects to an RSocket server as a downstream service would make a single connection that all users use. In this case, if the RSocket server needs to perform authorization based on the web application's users credentials, authentication for each request makes sense. In some scenarios, authentication at both setup and for each request makes sense. Consider a web application, as described previously. If we need to restrict the connection to the web application itself, we can provide a credential with a `SETUP` authority at connection time. Then each user can have different authorities but not the `SETUP` authority. This means that individual users can make requests but not make additional connections. [[rsocket-authentication-simple]] === Simple Authentication Spring Security has support for the https://github.com/rsocket/rsocket/blob/5920ed374d008abb712cb1fd7c9d91778b2f4a68/Extensions/Security/Simple.md[Simple Authentication Metadata Extension]. [NOTE] ==== Basic Authentication evolved into Simple Authentication and is only supported for backward compatibility. See `RSocketSecurity.basicAuthentication(Customizer)` for setting it up. ==== The RSocket receiver can decode the credentials by using `AuthenticationPayloadExchangeConverter`, which is automatically setup by using the `simpleAuthentication` portion of the DSL. The following example shows an explicit configuration: [tabs] ====== Java:: + [source,java,role="primary"] ---- @Bean PayloadSocketAcceptorInterceptor rsocketInterceptor(RSocketSecurity rsocket) { rsocket .authorizePayload(authorize -> authorize .anyRequest().authenticated() .anyExchange().permitAll() ) .simpleAuthentication(Customizer.withDefaults()); return rsocket.build(); } ---- Kotlin:: + [source,kotlin,role="secondary"] ---- @Bean open fun rsocketInterceptor(rsocket: RSocketSecurity): PayloadSocketAcceptorInterceptor { rsocket .authorizePayload { authorize -> authorize .anyRequest().authenticated() .anyExchange().permitAll() } .simpleAuthentication(withDefaults()) return rsocket.build() } ---- ====== The RSocket sender can send credentials by using `SimpleAuthenticationEncoder`, which you can add to Spring's `RSocketStrategies`. [tabs] ====== Java:: + [source,java,role="primary"] ---- RSocketStrategies.Builder strategies = ...; strategies.encoder(new SimpleAuthenticationEncoder()); ---- Kotlin:: + [source,kotlin,role="secondary"] ---- var strategies: RSocketStrategies.Builder = ... strategies.encoder(SimpleAuthenticationEncoder()) ---- ====== You can then use it to send a username and password to the receiver in the setup: [tabs] ====== Java:: + [source,java,role="primary"] ---- MimeType authenticationMimeType = MimeTypeUtils.parseMimeType(WellKnownMimeType.MESSAGE_RSOCKET_AUTHENTICATION.getString()); UsernamePasswordMetadata credentials = new UsernamePasswordMetadata("user", "password"); Mono requester = RSocketRequester.builder() .setupMetadata(credentials, authenticationMimeType) .rsocketStrategies(strategies.build()) .connectTcp(host, port); ---- Kotlin:: + [source,kotlin,role="secondary"] ---- val authenticationMimeType: MimeType = MimeTypeUtils.parseMimeType(WellKnownMimeType.MESSAGE_RSOCKET_AUTHENTICATION.string) val credentials = UsernamePasswordMetadata("user", "password") val requester: Mono = RSocketRequester.builder() .setupMetadata(credentials, authenticationMimeType) .rsocketStrategies(strategies.build()) .connectTcp(host, port) ---- ====== Alternatively or additionally, a username and password can be sent in a request. [tabs] ====== Java:: + [source,java,role="primary"] ---- Mono requester; UsernamePasswordMetadata credentials = new UsernamePasswordMetadata("user", "password"); public Mono findRadar(String code) { return this.requester.flatMap(req -> req.route("find.radar.{code}", code) .metadata(credentials, authenticationMimeType) .retrieveMono(AirportLocation.class) ); } ---- Kotlin:: + [source,kotlin,role="secondary"] ---- import org.springframework.messaging.rsocket.retrieveMono // ... var requester: Mono? = null var credentials = UsernamePasswordMetadata("user", "password") open fun findRadar(code: String): Mono { return requester!!.flatMap { req -> req.route("find.radar.{code}", code) .metadata(credentials, authenticationMimeType) .retrieveMono() } } ---- ====== [[rsocket-authentication-jwt]] === JWT Spring Security has support for the https://github.com/rsocket/rsocket/blob/5920ed374d008abb712cb1fd7c9d91778b2f4a68/Extensions/Security/Bearer.md[Bearer Token Authentication Metadata Extension]. The support comes in the form of authenticating a JWT (determining that the JWT is valid) and then using the JWT to make authorization decisions. The RSocket receiver can decode the credentials by using `BearerPayloadExchangeConverter`, which is automatically setup by using the `jwt` portion of the DSL. The following listing shows an example configuration: [tabs] ====== Java:: + [source,java,role="primary"] ---- @Bean PayloadSocketAcceptorInterceptor rsocketInterceptor(RSocketSecurity rsocket) { rsocket .authorizePayload(authorize -> authorize .anyRequest().authenticated() .anyExchange().permitAll() ) .jwt(Customizer.withDefaults()); return rsocket.build(); } ---- Kotlin:: + [source,kotlin,role="secondary"] ---- @Bean fun rsocketInterceptor(rsocket: RSocketSecurity): PayloadSocketAcceptorInterceptor { rsocket .authorizePayload { authorize -> authorize .anyRequest().authenticated() .anyExchange().permitAll() } .jwt(withDefaults()) return rsocket.build() } ---- ====== The configuration above relies on the existence of a `ReactiveJwtDecoder` `@Bean` being present. An example of creating one from the issuer can be found below: [tabs] ====== Java:: + [source,java,role="primary"] ---- @Bean ReactiveJwtDecoder jwtDecoder() { return ReactiveJwtDecoders .fromIssuerLocation("https://example.com/auth/realms/demo"); } ---- Kotlin:: + [source,kotlin,role="secondary"] ---- @Bean fun jwtDecoder(): ReactiveJwtDecoder { return ReactiveJwtDecoders .fromIssuerLocation("https://example.com/auth/realms/demo") } ---- ====== The RSocket sender does not need to do anything special to send the token, because the value is a simple `String`. The following example sends the token at setup time: [tabs] ====== Java:: + [source,java,role="primary"] ---- MimeType authenticationMimeType = MimeTypeUtils.parseMimeType(WellKnownMimeType.MESSAGE_RSOCKET_AUTHENTICATION.getString()); BearerTokenMetadata token = ...; Mono requester = RSocketRequester.builder() .setupMetadata(token, authenticationMimeType) .connectTcp(host, port); ---- Kotlin:: + [source,kotlin,role="secondary"] ---- val authenticationMimeType: MimeType = MimeTypeUtils.parseMimeType(WellKnownMimeType.MESSAGE_RSOCKET_AUTHENTICATION.string) val token: BearerTokenMetadata = ... val requester = RSocketRequester.builder() .setupMetadata(token, authenticationMimeType) .connectTcp(host, port) ---- ====== Alternatively or additionally, you can send the token in a request: [tabs] ====== Java:: + [source,java,role="primary"] ---- MimeType authenticationMimeType = MimeTypeUtils.parseMimeType(WellKnownMimeType.MESSAGE_RSOCKET_AUTHENTICATION.getString()); Mono requester; BearerTokenMetadata token = ...; public Mono findRadar(String code) { return this.requester.flatMap(req -> req.route("find.radar.{code}", code) .metadata(token, authenticationMimeType) .retrieveMono(AirportLocation.class) ); } ---- Kotlin:: + [source,kotlin,role="secondary"] ---- val authenticationMimeType: MimeType = MimeTypeUtils.parseMimeType(WellKnownMimeType.MESSAGE_RSOCKET_AUTHENTICATION.string) var requester: Mono? = null val token: BearerTokenMetadata = ... open fun findRadar(code: String): Mono { return this.requester!!.flatMap { req -> req.route("find.radar.{code}", code) .metadata(token, authenticationMimeType) .retrieveMono() } } ---- ====== [[rsocket-authorization]] == RSocket Authorization RSocket authorization is performed with `AuthorizationPayloadInterceptor`, which acts as a controller to invoke a `ReactiveAuthorizationManager` instance. You can use the DSL to set up authorization rules based upon the `PayloadExchange`. The following listing shows an example configuration: [tabs] ====== Java:: + [source,java,role="primary"] ---- rsocket .authorizePayload(authz -> authz .setup().hasRole("SETUP") // <1> .route("fetch.profile.me").authenticated() // <2> .matcher(payloadExchange -> isMatch(payloadExchange)) // <3> .hasRole("CUSTOM") .route("fetch.profile.{username}") // <4> .access((authentication, context) -> checkFriends(authentication, context)) .anyRequest().authenticated() // <5> .anyExchange().permitAll() // <6> ); ---- Kotlin:: + [source,kotlin,role="secondary"] ---- rsocket .authorizePayload { authz -> authz .setup().hasRole("SETUP") // <1> .route("fetch.profile.me").authenticated() // <2> .matcher { payloadExchange -> isMatch(payloadExchange) } // <3> .hasRole("CUSTOM") .route("fetch.profile.{username}") // <4> .access { authentication, context -> checkFriends(authentication, context) } .anyRequest().authenticated() // <5> .anyExchange().permitAll() } // <6> ---- ====== <1> Setting up a connection requires the `ROLE_SETUP` authority. <2> If the route is `fetch.profile.me`, authorization only requires the user to be authenticated. <3> In this rule, we set up a custom matcher, where authorization requires the user to have the `ROLE_CUSTOM` authority. <4> This rule uses custom authorization. The matcher expresses a variable with a name of `username` that is made available in the `context`. A custom authorization rule is exposed in the `checkFriends` method. <5> This rule ensures that a request that does not already have a rule requires the user to be authenticated. A request is where the metadata is included. It would not include additional payloads. <6> This rule ensures that any exchange that does not already have a rule is allowed for anyone. In this example, it means that payloads that have no metadata also have no authorization rules. Note that authorization rules are performed in order. Only the first authorization rule that matches is invoked.