spring-security/docs/manual/src/docbook/web-infrastructure.xml
2009-06-16 12:47:26 +00:00

253 lines
15 KiB
XML

<chapter xmlns="http://docbook.org/ns/docbook" version="5.0" xml:id="web-infrastructure"
xmlns:xlink="http://www.w3.org/1999/xlink">
<info>
<title>Web Application Infrastructure</title>
</info>
<section xml:id="filters">
<title>The Security Filter Chain</title>
<para>Spring Security's web infrastructure is based entirely on standard servlet filters. It
doesn't use servlets or any other servlet-based frameworks (such as Spring MVC) internally, so
it has no strong links to any particular web technology. It deals in
<classname>HttpServletRequest</classname>s and <classname>HttpServletResponse</classname>s
and doesn't care whether the requests come from a browser, a web service client, an
<classname>HttpInvoker</classname> or an AJAX application. </para>
<para> Spring Security maintains a filter chain internally where each of the filters has a
particular responsibility and filters are added or removed from the configuration depending on
which services are required. The ordering of the filters is important as there are
dependencies between them. If you have been using <link xlink:href="#ns-config">namespace
configuration</link>, then the filters are automatically configured for you and you don't
have to define any Spring beans explicitly but here may be times when you want full control
over the security filter chain, either because you are using features which aren't supported
in the namespace, or you are using your own customized versions of classes.</para>
<section xml:id="delegating-filter-proxy">
<title><classname>DelegatingFilterProxy</classname></title>
<para> When using servlet filters, you obviously need to declare them in your
<filename>web.xml</filename>, or they will be ignored by the servlet container. In Spring
Security, the filter classes are also Spring beans defined in the application context and
thus able to take advantage of Spring's rich dependency-injection facilities and lifecycle
interfaces. Spring's <classname>DelegatingFilterProxy</classname> provides the link between
<filename>web.xml</filename> and the application context. </para>
<para>When using <classname>DelegatingFilterProxy</classname>, you will see something like
this in the <filename>web.xml</filename> file: <programlisting><![CDATA[
<filter>
<filter-name>myFilter</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
</filter>
<filter-mapping>
<filter-name>myFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>]]>
</programlisting> Notice that the filter is actually a
<literal>DelegatingFilterProxy</literal>, and not the class that will actually implement
the logic of the filter. What <classname>DelegatingFilterProxy</classname> does is delegate
the <interfacename>Filter</interfacename>'s methods through to a bean which is obtained from
the Spring application context. This enables the bean to benefit from the Spring web
application context lifecycle support and configuration flexibility. The bean must implement
<interfacename>javax.servlet.Filter</interfacename> and it must have the same name as that
in the <literal>filter-name</literal> element. Read the Javadoc for
<classname>DelegatingFilterProxy</classname> for more information</para>
</section>
<section xml:id="filter-chain-proxy">
<title><classname>FilterChainProxy</classname></title>
<para> It should now be clear that you can declare each Spring Security filter bean that you
require in your application context file and add a corresponding
<classname>DelegatingFilterProxy</classname> entry to <filename>web.xml</filename> for
each filter, making sure that they are ordered correctly. This is a cumbersome approach and
clutters up the <filename>web.xml</filename> file quickly if we have a lot of filters. We
would prefer to just add a single entry to <filename>web.xml</filename> and deal entirely
with the application context file for managing our web security beans. This is where Spring
Secuiryt's <classname>FilterChainProxy</classname> comes in. It is wired using a
<literal>DelegatingFilterProxy</literal>, just like in the example above, but with the
<literal>filter-name</literal> set to the bean name <quote>filterChainProxy</quote>. The
filter chain is then declared in the application context with the same bean name. Here's an
example: <programlisting language="xml"><![CDATA[
<bean id="filterChainProxy" class="org.springframework.security.web.FilterChainProxy">
<sec:filter-chain-map path-type="ant">
<sec:filter-chain pattern="/webServices/**" filters="
securityContextPersistenceFilterWithASCFalse,
basicProcessingFilter,
exceptionTranslationFilter,
filterSecurityInterceptor" />
<sec:filter-chain pattern="/**" filters="
securityContextPersistenceFilterWithASCTrue,
authenticationProcessingFilter,
exceptionTranslationFilter,
filterSecurityInterceptor" />
</sec:filter-chain-map>
</bean>
]]>
</programlisting> The namespace element <literal>filter-chain-map</literal> is
used to set up the security filter chain(s) which are required within the application<footnote>
<para>Note that you'll need to include the security namespace in your application context
XML file in order to use this syntax.</para>
</footnote>. It maps a particular URL pattern to a chain of filters built up from the bean
names specified in the <literal>filters</literal> element. Both regular expressions and Ant
Paths are supported, and the most specific URIs appear first. At runtime the
<classname>FilterChainProxy</classname> will locate the first URI pattern that matches the
current web request and the list of filter beans specified by the <literal>filters</literal>
attribute will be applied to that request. The filters will be invoked in the order they are
defined, so you have complete control over the filter chain which is applied to a particular
URL.</para>
<para>You may have noticed we have declared two
<classname>SecurityContextPersistenceFilter</classname>s in the filter chain
(<literal>ASC</literal> is short for <literal>allowSessionCreation</literal>, a property
of <classname>SecurityContextPersistenceFilter</classname>). As web services will never
present a <literal>jsessionid</literal> on future requests, creating
<literal>HttpSession</literal>s for such user agents would be wasteful. If you had a
high-volume application which required maximum scalability, we recommend you use the
approach shown above. For smaller applications, using a single
<classname>SecurityContextPersistenceFilter</classname> (with its default
<literal>allowSessionCreation</literal> as <literal>true</literal>) would likely be
sufficient.</para>
<para>In relation to lifecycle issues, the <classname>FilterChainProxy</classname> will always
delegate <methodname>init(FilterConfig)</methodname> and <methodname>destroy()</methodname>
methods through to the underlaying <interfacename>Filter</interfacename>s if such methods
are called against <classname>FilterChainProxy</classname> itself. In this case,
<classname>FilterChainProxy</classname> guarantees to only initialize and destroy each
<literal>Filter</literal> bean once, no matter how many times it is declared in the filter
chain(s). You control the overall choice as to whether these methods are called or not via
the <literal>targetFilterLifecycle</literal> initialization parameter of
<literal>DelegatingFilterProxy</literal>. By default this property is
<literal>false</literal> and servlet container lifecycle invocations are not delegated
through <literal>DelegatingFilterProxy</literal>.</para>
<para> When we looked at how to set up web security using <link
xlink:href="#namespace-auto-config">namespace configuration</link>, we used a
<literal>DelegatingFilterProxy</literal> with the name
<quote>springSecurityFilterChain</quote>. You should now be able to see that this is the
name of the <classname>FilterChainProxy</classname> which is created by the namespace. </para>
<section>
<title>Bypassing the Filter Chain</title>
<para> As with the namespace, you can use the attribute <literal>filters = "none"</literal>
as an alternative to supplying a filter bean list. This will omit the request pattern from
the security filter chain entirely. Note that anything matching this path will then have
no authentication or authorization services applied and will be freely accessible. If you
want to make use of the contents of the <classname>SecurityContext</classname> contents
during a request, then it must have passed through the security filter chain. Otherwise
the <classname>SecurityContextHolder</classname> will not have been populated and the
contents will be null.</para>
</section>
</section>
<section>
<title>Filter Ordering</title>
<para>The order that filters are defined in the chain is very important. Irrespective of which
filters you are actually using, the order should be as follows:
<orderedlist>
<listitem>
<para><classname>ChannelProcessingFilter</classname>, because it might need to redirect
to a different protocol</para>
</listitem>
<listitem>
<para><classname>ConcurrentSessionFilter</classname>, because it doesn't use any
<classname>SecurityContextHolder</classname> functionality but needs to update the
<interfacename>SessionRegistry</interfacename> to reflect ongoing requests from the
principal</para>
</listitem>
<listitem>
<para><classname>SecurityContextPersistenceFilter</classname>, so a
<interfacename>SecurityContext</interfacename> can be set up in the
<classname>SecurityContextHolder</classname> at the beginning of a web request, and
any changes to the <interfacename>SecurityContext</interfacename> can be copied to the
<literal>HttpSession</literal> when the web request ends (ready for use with the
next web request)</para>
</listitem>
<listitem>
<para>Authentication processing mechanisms -
<classname>UsernamePasswordAuthenticationProcessingFilter</classname>,
<classname>CasProcessingFilter</classname>,
<classname>BasicProcessingFilter</classname> etc - so that the
<classname>SecurityContextHolder</classname> can be modified to contain a valid
<interfacename>Authentication</interfacename> request token</para>
</listitem>
<listitem>
<para>The <literal>SecurityContextHolderAwareRequestFilter</literal>, if you are using
it to install a Spring Security aware <literal>HttpServletRequestWrapper</literal>
into your servlet container</para>
</listitem>
<listitem>
<para><classname>RememberMeProcessingFilter</classname>, so that if no earlier
authentication processing mechanism updated the
<classname>SecurityContextHolder</classname>, and the request presents a cookie that
enables remember-me services to take place, a suitable remembered
<interfacename>Authentication</interfacename> object will be put there</para>
</listitem>
<listitem>
<para><classname>AnonymousProcessingFilter</classname>, so that if no earlier
authentication processing mechanism updated the
<classname>SecurityContextHolder</classname>, an anonymous
<interfacename>Authentication</interfacename> object will be put there</para>
</listitem>
<listitem>
<para><classname>ExceptionTranslationFilter</classname>, to catch any Spring Security
exceptions so that either an HTTP error response can be returned or an appropriate
<interfacename>AuthenticationEntryPoint</interfacename> can be launched</para>
</listitem>
<listitem>
<para><classname>FilterSecurityInterceptor</classname>, to protect web URIs and raise
exceptions when access is denied</para>
</listitem>
</orderedlist></para>
</section>
<section>
<title>Use with other Filter-Based Frameworks</title>
<para>If you're using some other framework that is also filter-based, then you need to make
sure that the Spring Security filters come first. This enables the
<classname>SecurityContextHolder</classname> to be populated in time for use by the other
filters. Examples are the use of SiteMesh to decorate your web pages or a web framework like
Wicket which uses a filter to handle its requests. </para>
</section>
</section>
<!--
<section xml:id="taglib">
<info>
<title>Tag Libraries</title>
</info>
<para>Spring Security comes bundled with several JSP tag libraries which provide a range of
different services.</para>
<section xml:id="taglib-config">
<info>
<title>Configuration</title>
</info>
<para>All taglib classes are included in the core
<literal>spring-security-taglibs-&lt;version>.jar</literal> file, with the
<literal>security.tld</literal> located in the JAR's <literal>META-INF</literal>
directory. This means for JSP 1.2+ web containers you can simply include the JAR in the
WAR's <literal>WEB-INF/lib</literal> directory and it will be available.</para>
</section>
<section xml:id="taglib-usage">
<info>
<title>Usage</title>
</info>
<para>Now that you've configured the tag libraries, refer to the individual reference guide
sections for details on how to use them. Note that when using the tags, you should include
the taglib reference in your JSP:
<programlisting>
&lt;%@ taglib prefix='security' uri='http://www.springframework.org/security/tags' %&gt;
</programlisting></para>
</section>
</section>
<section xml:id="authentication-taglibs">
<info>
<title>Authentication Tag Libraries</title>
</info>
<para><literal>AuthenticationTag</literal> is used to simply output a property of the current
<interfacename>Authentication</interfacename> object to the web page.</para>
<para>The following JSP fragment illustrates how to use the
<literal>AuthenticationTag</literal>:</para>
<para>
<programlisting>&lt;security:authentication property="principal.username"/&gt;</programlisting>
</para>
<para>This tag would cause the principal's name to be output. Here we are assuming the
<literal>Authentication.getPrincipal()</literal> is a
<interfacename>UserDetails</interfacename> object, which is generally the case when using
one of Spring Security's stadard <classname>AuthenticationProvider</classname>
implementations.</para>
</section>
-->
</chapter>