discourse-ai/lib/modules/ai_helper/semantic_categorizer.rb

82 lines
2.6 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
module DiscourseAi
module AiHelper
class SemanticCategorizer
def initialize(text, user)
@user = user
@text = text
end
def categories
return [] if @text.blank?
return [] unless SiteSetting.ai_embeddings_enabled
candidates = nearest_neighbors(limit: 100)
candidate_ids = candidates.map(&:first)
::Topic
.joins(:category)
.where(id: candidate_ids)
.where("categories.id IN (?)", Category.topic_create_allowed(@user.guardian).pluck(:id))
.order("array_position(ARRAY#{candidate_ids}, topics.id)")
.pluck("categories.slug")
.map
.with_index { |category, index| { name: category, score: candidates[index].last } }
.map do |c|
c[:score] = 1 / (c[:score] + 1) # inverse of the distance
c
end
.group_by { |c| c[:name] }
.map { |name, scores| { name: name, score: scores.sum { |s| s[:score] } } }
.sort_by { |c| -c[:score] }
.take(5)
end
def tags
return [] if @text.blank?
return [] unless SiteSetting.ai_embeddings_enabled
candidates = nearest_neighbors(limit: 100)
candidate_ids = candidates.map(&:first)
::Topic
.joins(:topic_tags, :tags)
.where(id: candidate_ids)
.where("tags.id IN (?)", DiscourseTagging.visible_tags(@user.guardian).pluck(:id))
.group("topics.id")
.order("array_position(ARRAY#{candidate_ids}, topics.id)")
.pluck("array_agg(tags.name)")
.map(&:uniq)
.map
.with_index { |tag_list, index| { tags: tag_list, score: candidates[index].last } }
.flat_map { |c| c[:tags].map { |t| { name: t, score: c[:score] } } }
.map do |c|
c[:score] = 1 / (c[:score] + 1) # inverse of the distance
c
end
.group_by { |c| c[:name] }
.map { |name, scores| { name: name, score: scores.sum { |s| s[:score] } } }
.sort_by { |c| -c[:score] }
.take(5)
end
private
def nearest_neighbors(limit: 100)
strategy = DiscourseAi::Embeddings::Strategies::Truncation.new
vector_rep =
DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(strategy)
raw_vector = vector_rep.vector_from(@text)
vector_rep.asymmetric_topics_similarity_search(
raw_vector,
limit: limit,
offset: 0,
return_distance: true,
)
end
end
end
end