discourse-ai/lib/summarization/strategies/base.rb

60 lines
2.0 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
module DiscourseAi
module Summarization
module Strategies
# Objects inheriting from this class will get passed as a dependency to `DiscourseAi::Summarization::FoldContent`.
# This collaborator knows how to source the content to summarize and the prompts used in the process,
# one for summarizing a chunk and another for concatenating them if necessary.
class Base
def initialize(target)
@target = target
end
attr_reader :target
# The summary type differentiates instances of `AiSummary` pointing to a single target.
# See the `summary_type` enum for available options.
def type
raise NotImplementedError
end
# @returns { Hash } - Content to summarize.
#
# This method returns a hash with the content to summarize and additional information.
# The only mandatory key is `contents`, which must be an array of hashes with
# the following structure:
#
# {
# poster: A way to tell who write the content,
# id: A number to signal order,
# text: Text to summarize
# }
#
# Additionally, you could add more context, which will be available in the prompt. e.g.:
#
# {
# resource_path: "#{Discourse.base_path}/t/-/#{target.id}",
# content_title: target.title,
# contents: [...]
# }
#
def targets_data
raise NotImplementedError
end
# @returns { DiscourseAi::Completions::Prompt } - Prompt passed to the LLM when concatenating multiple chunks.
def contatenation_prompt(_texts_to_summarize)
raise NotImplementedError
end
# @returns { DiscourseAi::Completions::Prompt } - Prompt passed to the LLM on each chunk,
# and when the whole content fits in one call.
def summarize_single_prompt(_input, _opts)
raise NotImplementedError
end
end
end
end
end