discourse-ai/lib/completions/dialects/chat_gpt.rb

117 lines
3.2 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
module DiscourseAi
module Completions
module Dialects
class ChatGpt < Dialect
class << self
def can_translate?(model_provider)
model_provider == "open_ai" || model_provider == "azure"
end
end
VALID_ID_REGEX = /\A[a-zA-Z0-9_]+\z/
def native_tool_support?
llm_model.provider == "open_ai" || llm_model.provider == "azure"
end
def translate
@embed_user_ids =
prompt.messages.any? do |m|
m[:id] && m[:type] == :user && !m[:id].to_s.match?(VALID_ID_REGEX)
end
super
end
def max_prompt_tokens
# provide a buffer of 120 tokens - our function counting is not
# 100% accurate and getting numbers to align exactly is very hard
buffer = (opts[:max_tokens] || 2500) + 50
if tools.present?
# note this is about 100 tokens over, OpenAI have a more optimal representation
@function_size ||= llm_model.tokenizer_class.size(tools.to_json.to_s)
buffer += @function_size
end
llm_model.max_prompt_tokens - buffer
end
# no support for streaming or tools or system messages
def is_gpt_o?
llm_model.provider == "open_ai" && llm_model.name.include?("o1-")
end
private
def tools_dialect
@tools_dialect ||= DiscourseAi::Completions::Dialects::OpenAiTools.new(prompt.tools)
end
def system_msg(msg)
if is_gpt_o?
{ role: "user", content: msg[:content] }
else
{ role: "system", content: msg[:content] }
end
end
def model_msg(msg)
{ role: "assistant", content: msg[:content] }
end
def tool_call_msg(msg)
tools_dialect.from_raw_tool_call(msg)
end
def tool_msg(msg)
tools_dialect.from_raw_tool(msg)
end
def user_msg(msg)
user_message = { role: "user", content: msg[:content] }
if msg[:id]
if @embed_user_ids
user_message[:content] = "#{msg[:id]}: #{msg[:content]}"
else
user_message[:name] = msg[:id]
end
end
user_message[:content] = inline_images(user_message[:content], msg) if vision_support?
user_message
end
def inline_images(content, message)
encoded_uploads = prompt.encoded_uploads(message)
return content if encoded_uploads.blank?
content_w_imgs =
encoded_uploads.reduce([]) do |memo, details|
memo << {
type: "image_url",
image_url: {
url: "data:#{details[:mime_type]};base64,#{details[:base64]}",
},
}
end
content_w_imgs << { type: "text", text: message[:content] }
end
def per_message_overhead
# open ai defines about 4 tokens per message of overhead
4
end
def calculate_message_token(context)
llm_model.tokenizer_class.size(context[:content].to_s + context[:name].to_s)
end
end
end
end
end