discourse-ai/lib/modules/toxicity/toxicity_classification.rb

73 lines
1.8 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
module DiscourseAi
module Toxicity
class ToxicityClassification
CLASSIFICATION_LABELS = %i[
toxicity
severe_toxicity
obscene
identity_attack
insult
threat
sexual_explicit
]
def type
:toxicity
end
def can_classify?(target)
content_of(target).present?
end
def get_verdicts(classification_data)
# We only use one model for this classification.
# Classification_data looks like { model_name => classification }
_model_used, data = classification_data.to_a.first
verdict =
CLASSIFICATION_LABELS.any? do |label|
data[label] >= SiteSetting.send("ai_toxicity_flag_threshold_#{label}")
end
{ available_model => verdict }
end
def should_flag_based_on?(verdicts)
return false if !SiteSetting.ai_toxicity_flag_automatically
verdicts.values.any?
end
def request(target_to_classify)
data =
::DiscourseAi::Inference::DiscourseClassifier.perform!(
"#{SiteSetting.ai_toxicity_inference_service_api_endpoint}/api/v1/classify",
SiteSetting.ai_toxicity_inference_service_api_model,
content_of(target_to_classify),
SiteSetting.ai_toxicity_inference_service_api_key,
)
{ available_model => data }
end
private
def available_model
SiteSetting.ai_toxicity_inference_service_api_model
end
def content_of(target_to_classify)
2023-03-17 10:15:38 -04:00
return target_to_classify.message if target_to_classify.is_a?(Chat::Message)
if target_to_classify.post_number == 1
"#{target_to_classify.topic.title}\n#{target_to_classify.raw}"
else
target_to_classify.raw
end
end
end
end
end