discourse-ai/spec/lib/completions/endpoints/vllm_spec.rb

184 lines
5.0 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
require_relative "endpoint_compliance"
class VllmMock < EndpointMock
def response(content)
{
id: "cmpl-6sZfAb30Rnv9Q7ufzFwvQsMpjZh8S",
object: "chat.completion",
created: 1_678_464_820,
model: "mistralai/Mixtral-8x7B-Instruct-v0.1",
usage: {
prompt_tokens: 337,
completion_tokens: 162,
total_tokens: 499,
},
choices: [
{ message: { role: "assistant", content: content }, finish_reason: "stop", index: 0 },
],
}
end
def stub_response(prompt, response_text, tool_call: false)
WebMock
.stub_request(:post, "https://test.dev/v1/chat/completions")
.with(body: model.default_options.merge(messages: prompt).to_json)
.to_return(status: 200, body: JSON.dump(response(response_text)))
end
def stream_line(delta, finish_reason: nil)
+"data: " << {
id: "cmpl-#{SecureRandom.hex}",
created: 1_681_283_881,
model: "mistralai/Mixtral-8x7B-Instruct-v0.1",
choices: [{ delta: { content: delta } }],
index: 0,
}.to_json
end
def stub_streamed_response(prompt, deltas, tool_call: false)
chunks =
deltas.each_with_index.map do |_, index|
if index == (deltas.length - 1)
stream_line(deltas[index], finish_reason: "stop_sequence")
else
stream_line(deltas[index])
end
end
chunks = (chunks.join("\n\n") << "data: [DONE]").split("")
WebMock
.stub_request(:post, "https://test.dev/v1/chat/completions")
.with(body: model.default_options.merge(messages: prompt, stream: true).to_json)
.to_return(status: 200, body: chunks)
end
end
RSpec.describe DiscourseAi::Completions::Endpoints::Vllm do
subject(:endpoint) { described_class.new(llm_model) }
fab!(:llm_model) { Fabricate(:vllm_model) }
2024-03-05 10:48:28 -05:00
fab!(:user)
let(:llm) { DiscourseAi::Completions::Llm.proxy("custom:#{llm_model.id}") }
let(:vllm_mock) { VllmMock.new(endpoint) }
let(:compliance) do
EndpointsCompliance.new(
self,
endpoint,
DiscourseAi::Completions::Dialects::OpenAiCompatible,
user,
)
end
let(:dialect) do
DiscourseAi::Completions::Dialects::OpenAiCompatible.new(generic_prompt, llm_model)
end
let(:prompt) { dialect.translate }
let(:request_body) { model.default_options.merge(messages: prompt).to_json }
let(:stream_request_body) { model.default_options.merge(messages: prompt, stream: true).to_json }
describe "tool support" do
it "is able to invoke XML tools correctly" do
xml = <<~XML
<function_calls>
<invoke>
<tool_name>calculate</tool_name>
<parameters>
<expression>1+1</expression></parameters>
</invoke>
</function_calls>
should be ignored
XML
body = {
id: "chatcmpl-6sZfAb30Rnv9Q7ufzFwvQsMpjZh8S",
object: "chat.completion",
created: 1_678_464_820,
model: "gpt-3.5-turbo-0301",
usage: {
prompt_tokens: 337,
completion_tokens: 162,
total_tokens: 499,
},
choices: [
{ message: { role: "assistant", content: xml }, finish_reason: "stop", index: 0 },
],
}
tool = {
name: "calculate",
description: "calculate something",
parameters: [
{
name: "expression",
type: "string",
description: "expression to calculate",
required: true,
},
],
}
stub_request(:post, "https://test.dev/v1/chat/completions").to_return(
status: 200,
body: body.to_json,
)
prompt =
DiscourseAi::Completions::Prompt.new(
"You a calculator",
messages: [{ type: :user, id: "user1", content: "calculate 2758975 + 21.11" }],
tools: [tool],
)
result = llm.generate(prompt, user: Discourse.system_user)
expected = <<~TEXT
<function_calls>
<invoke>
<tool_name>calculate</tool_name>
<parameters>
<expression>1+1</expression></parameters>
<tool_id>tool_0</tool_id>
</invoke>
</function_calls>
TEXT
expect(result.strip).to eq(expected.strip)
end
end
describe "#perform_completion!" do
context "when using regular mode" do
context "with simple prompts" do
it "completes a trivial prompt and logs the response" do
compliance.regular_mode_simple_prompt(vllm_mock)
end
end
context "with tools" do
it "returns a function invocation" do
compliance.regular_mode_tools(vllm_mock)
end
end
end
describe "when using streaming mode" do
context "with simple prompts" do
it "completes a trivial prompt and logs the response" do
compliance.streaming_mode_simple_prompt(vllm_mock)
end
end
context "with tools" do
it "returns a function invoncation" do
compliance.streaming_mode_tools(vllm_mock)
end
end
end
end
end