discourse-ai/lib/completions/dialects/dialect.rb

171 lines
5.0 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
module DiscourseAi
module Completions
module Dialects
class Dialect
class << self
def can_translate?(_model_name)
raise NotImplemented
end
def dialect_for(model_name)
dialects = [
DiscourseAi::Completions::Dialects::Claude,
DiscourseAi::Completions::Dialects::Llama2Classic,
DiscourseAi::Completions::Dialects::ChatGpt,
DiscourseAi::Completions::Dialects::OrcaStyle,
DiscourseAi::Completions::Dialects::Gemini,
DiscourseAi::Completions::Dialects::Mixtral,
]
if Rails.env.test? || Rails.env.development?
dialects << DiscourseAi::Completions::Dialects::Fake
end
dialect = dialects.find { |d| d.can_translate?(model_name) }
raise DiscourseAi::Completions::Llm::UNKNOWN_MODEL if !dialect
dialect
end
def tokenizer
raise NotImplemented
end
def tool_preamble
<<~TEXT
In this environment you have access to a set of tools you can use to answer the user's question.
You may call them like this. Only invoke one function at a time and wait for the results before invoking another function:
<function_calls>
<invoke>
<tool_name>$TOOL_NAME</tool_name>
<parameters>
<$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>
...
</parameters>
</invoke>
</function_calls>
if a parameter type is an array, return a JSON array of values. For example:
[1,"two",3.0]
Here are the tools available:
TEXT
end
end
def initialize(generic_prompt, model_name, opts: {})
@prompt = generic_prompt
@model_name = model_name
@opts = opts
end
def translate
raise NotImplemented
end
def tools
tools = +""
prompt.tools.each do |function|
parameters = +""
if function[:parameters].present?
function[:parameters].each do |parameter|
parameters << <<~PARAMETER
<parameter>
<name>#{parameter[:name]}</name>
<type>#{parameter[:type]}</type>
<description>#{parameter[:description]}</description>
<required>#{parameter[:required]}</required>
PARAMETER
if parameter[:enum]
parameters << "<options>#{parameter[:enum].join(",")}</options>\n"
end
parameters << "</parameter>\n"
end
end
tools << <<~TOOLS
<tool_description>
<tool_name>#{function[:name]}</tool_name>
<description>#{function[:description]}</description>
<parameters>
#{parameters}</parameters>
</tool_description>
TOOLS
end
tools
end
def conversation_context
raise NotImplemented
end
def max_prompt_tokens
raise NotImplemented
end
private
attr_reader :prompt, :model_name, :opts
def trim_messages(messages)
prompt_limit = max_prompt_tokens
current_token_count = 0
message_step_size = (max_prompt_tokens / 25).to_i * -1
reversed_trimmed_msgs =
messages
.reverse
.reduce([]) do |acc, msg|
message_tokens = calculate_message_token(msg)
dupped_msg = msg.dup
# Don't trim tool call metadata.
if msg[:type] == :tool_call
current_token_count += message_tokens + per_message_overhead
acc << dupped_msg
next(acc)
end
# Trimming content to make sure we respect token limit.
while dupped_msg[:content].present? &&
message_tokens + current_token_count + per_message_overhead > prompt_limit
dupped_msg[:content] = dupped_msg[:content][0..message_step_size] || ""
message_tokens = calculate_message_token(dupped_msg)
end
next(acc) if dupped_msg[:content].blank?
current_token_count += message_tokens + per_message_overhead
acc << dupped_msg
end
reversed_trimmed_msgs.reverse
end
def per_message_overhead
0
end
def calculate_message_token(msg)
self.class.tokenizer.size(msg[:content].to_s)
end
def build_tools_prompt
return "" if prompt.tools.blank?
(<<~TEXT).strip
#{self.class.tool_preamble}
<tools>
#{tools}</tools>
TEXT
end
end
end
end
end