discourse-ai/lib/summarization/fold_content.rb

190 lines
5.8 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
module DiscourseAi
module Summarization
# This class offers a generic way of summarizing content from multiple sources using different prompts.
#
# It summarizes large amounts of content by recursively summarizing it in smaller chunks that
# fit the given model context window, finally concatenating the disjoint summaries
# into a final version.
#
class FoldContent
def initialize(llm, strategy, persist_summaries: true)
@llm = llm
@strategy = strategy
@persist_summaries = persist_summaries
end
attr_reader :llm, :strategy
# @param user { User } - User object used for auditing usage.
#
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response alongside a cancel function.
# Note: The block is only called with results of the final summary, not intermediate summaries.
#
# @returns { AiSummary } - Resulting summary.
def summarize(user, &on_partial_blk)
opts = content_to_summarize.except(:contents)
initial_chunks =
rebalance_chunks(
content_to_summarize[:contents].map do |c|
{ ids: [c[:id]], summary: format_content_item(c) }
end,
)
# Special case where we can do all the summarization in one pass.
result =
if initial_chunks.length == 1
{
summary:
summarize_single(initial_chunks.first[:summary], user, opts, &on_partial_blk),
chunks: [],
}
else
summarize_chunks(initial_chunks, user, opts, &on_partial_blk)
end
if persist_summaries
AiSummary.store!(
strategy.target,
strategy.type,
llm_model.name,
result[:summary],
content_to_summarize[:contents].map { |c| c[:id] },
)
else
AiSummary.new(summarized_text: result[:summary])
end
end
# @returns { AiSummary } - Resulting summary.
#
# Finds a summary matching the target and strategy. Marks it as outdates if the strategy found newer content
def existing_summary
if !defined?(@existing_summary)
summary = AiSummary.find_by(target: strategy.target, summary_type: strategy.type)
if summary
@existing_summary = summary
if existing_summary.original_content_sha != latest_sha
@existing_summary.mark_as_outdated
end
end
end
@existing_summary
end
def delete_cached_summaries!
AiSummary.where(target: strategy.target, summary_type: strategy.type).destroy_all
end
private
attr_reader :persist_summaries
def llm_model
llm.llm_model
end
def content_to_summarize
@targets_data ||= strategy.targets_data
end
def latest_sha
@latest_sha ||= AiSummary.build_sha(content_to_summarize[:contents].map { |c| c[:id] }.join)
end
def summarize_chunks(chunks, user, opts, &on_partial_blk)
# Safely assume we always have more than one chunk.
summarized_chunks = summarize_in_chunks(chunks, user, opts)
total_summaries_size =
llm_model.tokenizer_class.size(summarized_chunks.map { |s| s[:summary].to_s }.join)
if total_summaries_size < available_tokens
# Chunks are small enough, we can concatenate them.
{
summary:
concatenate_summaries(
summarized_chunks.map { |s| s[:summary] },
user,
&on_partial_blk
),
chunks: summarized_chunks,
}
else
# We have summarized chunks but we can't concatenate them yet. Split them into smaller summaries and summarize again.
rebalanced_chunks = rebalance_chunks(summarized_chunks)
summarize_chunks(rebalanced_chunks, user, opts, &on_partial_blk)
end
end
def format_content_item(item)
"(#{item[:id]} #{item[:poster]} said: #{item[:text]} "
end
def rebalance_chunks(chunks)
section = { ids: [], summary: "" }
chunks =
chunks.reduce([]) do |sections, chunk|
if llm_model.tokenizer_class.can_expand_tokens?(
section[:summary],
chunk[:summary],
available_tokens,
)
section[:summary] += chunk[:summary]
section[:ids] = section[:ids].concat(chunk[:ids])
else
sections << section
section = chunk
end
sections
end
chunks << section if section[:summary].present?
chunks
end
def summarize_single(text, user, opts, &on_partial_blk)
prompt = strategy.summarize_single_prompt(text, opts)
llm.generate(prompt, user: user, feature_name: "summarize", &on_partial_blk)
end
def summarize_in_chunks(chunks, user, opts)
chunks.map do |chunk|
prompt = strategy.summarize_single_prompt(chunk[:summary], opts)
chunk[:summary] = llm.generate(
prompt,
user: user,
max_tokens: 300,
feature_name: "summarize",
)
chunk
end
end
def concatenate_summaries(texts_to_summarize, user, &on_partial_blk)
prompt = strategy.concatenation_prompt(texts_to_summarize)
llm.generate(prompt, user: user, &on_partial_blk)
end
def available_tokens
# Reserve tokens for the response and the base prompt
# ~500 words
reserved_tokens = 700
llm_model.max_prompt_tokens - reserved_tokens
end
end
end
end