discourse-ai/lib/ai_bot/personas/persona.rb

311 lines
9.1 KiB
Ruby
Raw Normal View History

#frozen_string_literal: true
module DiscourseAi
module AiBot
module Personas
class Persona
class << self
def rag_conversation_chunks
10
end
def vision_enabled
false
end
def vision_max_pixels
1_048_576
end
FEATURE: Add Question Consolidator for robust Upload support in Personas (#596) This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments. Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer. EG: - User: how many cars are there in europe - Model: detailed answer about cars in europe including the term car and vehicle many times - User: Nice, what about trains are there in the US In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal. Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content. The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui. This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation. Key changes: 1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation. 2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt. 3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question. 4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration. 5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality. This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
2024-04-29 23:49:21 -04:00
def question_consolidator_llm
nil
end
def system_personas
@system_personas ||= {
Personas::General => -1,
Personas::SqlHelper => -2,
Personas::Artist => -3,
Personas::SettingsExplorer => -4,
Personas::Researcher => -5,
Personas::Creative => -6,
Personas::DallE3 => -7,
Personas::DiscourseHelper => -8,
Personas::GithubHelper => -9,
}
end
def system_personas_by_id
@system_personas_by_id ||= system_personas.invert
end
def all(user:)
# listing tools has to be dynamic cause site settings may change
AiPersona.all_personas.filter do |persona|
next false if !user.in_any_groups?(persona.allowed_group_ids)
if persona.system
instance = persona.new
(
instance.required_tools == [] ||
(instance.required_tools - all_available_tools).empty?
)
else
true
end
end
end
def find_by(id: nil, name: nil, user:)
all(user: user).find { |persona| persona.id == id || persona.name == name }
end
def name
I18n.t("discourse_ai.ai_bot.personas.#{to_s.demodulize.underscore}.name")
end
def description
I18n.t("discourse_ai.ai_bot.personas.#{to_s.demodulize.underscore}.description")
end
def all_available_tools
tools = [
Tools::ListCategories,
Tools::Time,
Tools::Search,
Tools::Summarize,
Tools::Read,
Tools::DbSchema,
Tools::SearchSettings,
Tools::Summarize,
Tools::SettingContext,
Tools::RandomPicker,
Tools::DiscourseMetaSearch,
Tools::GithubFileContent,
Tools::GithubPullRequestDiff,
Tools::WebBrowser,
]
tools << Tools::GithubSearchCode if SiteSetting.ai_bot_github_access_token.present?
tools << Tools::ListTags if SiteSetting.tagging_enabled
tools << Tools::Image if SiteSetting.ai_stability_api_key.present?
tools << Tools::DallE if SiteSetting.ai_openai_api_key.present?
if SiteSetting.ai_google_custom_search_api_key.present? &&
SiteSetting.ai_google_custom_search_cx.present?
tools << Tools::Google
FEATURE: UI to update ai personas on admin page (#290) Introduces a UI to manage customizable personas (admin only feature) Part of the change was some extensive internal refactoring: - AIBot now has a persona set in the constructor, once set it never changes - Command now takes in bot as a constructor param, so it has the correct persona and is not generating AIBot objects on the fly - Added a .prettierignore file, due to the way ALE is configured in nvim it is a pre-req for prettier to work - Adds a bunch of validations on the AIPersona model, system personas (artist/creative etc...) are all seeded. We now ensure - name uniqueness, and only allow certain properties to be touched for system personas. - (JS note) the client side design takes advantage of nested routes, the parent route for personas gets all the personas via this.store.findAll("ai-persona") then child routes simply reach into this model to find a particular persona. - (JS note) data is sideloaded into the ai-persona model the meta property supplied from the controller, resultSetMeta - This removes ai_bot_enabled_personas and ai_bot_enabled_chat_commands, both should be controlled from the UI on a per persona basis - Fixes a long standing bug in token accounting ... we were doing to_json.length instead of to_json.to_s.length - Amended it so {commands} are always inserted at the end unconditionally, no need to add it to the template of the system message as it just confuses things - Adds a concept of required_commands to stock personas, these are commands that must be configured for this stock persona to show up. - Refactored tests so we stop requiring inference_stubs, it was very confusing to need it, added to plugin.rb for now which at least is clearer - Migrates the persona selector to gjs --------- Co-authored-by: Joffrey JAFFEUX <j.jaffeux@gmail.com> Co-authored-by: Martin Brennan <martin@discourse.org>
2023-11-21 00:56:43 -05:00
end
tools
end
end
def id
@ai_persona&.id || self.class.system_personas[self.class]
end
def tools
[]
end
def required_tools
[]
end
def temperature
nil
end
def top_p
nil
end
def options
{}
end
def available_tools
self.class.all_available_tools.filter { |tool| tools.include?(tool) }
end
FEATURE: Add Question Consolidator for robust Upload support in Personas (#596) This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments. Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer. EG: - User: how many cars are there in europe - Model: detailed answer about cars in europe including the term car and vehicle many times - User: Nice, what about trains are there in the US In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal. Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content. The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui. This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation. Key changes: 1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation. 2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt. 3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question. 4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration. 5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality. This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
2024-04-29 23:49:21 -04:00
def craft_prompt(context, llm: nil)
system_insts =
system_prompt.gsub(/\{(\w+)\}/) do |match|
found = context[match[1..-2].to_sym]
found.nil? ? match : found.to_s
end
prompt_insts = <<~TEXT.strip
#{system_insts}
#{available_tools.map(&:custom_system_message).compact_blank.join("\n")}
TEXT
FEATURE: Add Question Consolidator for robust Upload support in Personas (#596) This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments. Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer. EG: - User: how many cars are there in europe - Model: detailed answer about cars in europe including the term car and vehicle many times - User: Nice, what about trains are there in the US In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal. Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content. The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui. This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation. Key changes: 1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation. 2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt. 3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question. 4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration. 5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality. This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
2024-04-29 23:49:21 -04:00
question_consolidator_llm = llm
if self.class.question_consolidator_llm.present?
question_consolidator_llm =
DiscourseAi::Completions::Llm.proxy(self.class.question_consolidator_llm)
end
FEATURE: Add Question Consolidator for robust Upload support in Personas (#596) This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments. Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer. EG: - User: how many cars are there in europe - Model: detailed answer about cars in europe including the term car and vehicle many times - User: Nice, what about trains are there in the US In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal. Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content. The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui. This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation. Key changes: 1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation. 2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt. 3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question. 4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration. 5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality. This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
2024-04-29 23:49:21 -04:00
fragments_guidance =
rag_fragments_prompt(
context[:conversation_context].to_a,
llm: question_consolidator_llm,
user: context[:user],
)&.strip
prompt_insts << fragments_guidance if fragments_guidance.present?
prompt =
DiscourseAi::Completions::Prompt.new(
prompt_insts,
messages: context[:conversation_context].to_a,
topic_id: context[:topic_id],
post_id: context[:post_id],
)
prompt.max_pixels = self.class.vision_max_pixels if self.class.vision_enabled
prompt.tools = available_tools.map(&:signature) if available_tools
prompt
FEATURE: UI to update ai personas on admin page (#290) Introduces a UI to manage customizable personas (admin only feature) Part of the change was some extensive internal refactoring: - AIBot now has a persona set in the constructor, once set it never changes - Command now takes in bot as a constructor param, so it has the correct persona and is not generating AIBot objects on the fly - Added a .prettierignore file, due to the way ALE is configured in nvim it is a pre-req for prettier to work - Adds a bunch of validations on the AIPersona model, system personas (artist/creative etc...) are all seeded. We now ensure - name uniqueness, and only allow certain properties to be touched for system personas. - (JS note) the client side design takes advantage of nested routes, the parent route for personas gets all the personas via this.store.findAll("ai-persona") then child routes simply reach into this model to find a particular persona. - (JS note) data is sideloaded into the ai-persona model the meta property supplied from the controller, resultSetMeta - This removes ai_bot_enabled_personas and ai_bot_enabled_chat_commands, both should be controlled from the UI on a per persona basis - Fixes a long standing bug in token accounting ... we were doing to_json.length instead of to_json.to_s.length - Amended it so {commands} are always inserted at the end unconditionally, no need to add it to the template of the system message as it just confuses things - Adds a concept of required_commands to stock personas, these are commands that must be configured for this stock persona to show up. - Refactored tests so we stop requiring inference_stubs, it was very confusing to need it, added to plugin.rb for now which at least is clearer - Migrates the persona selector to gjs --------- Co-authored-by: Joffrey JAFFEUX <j.jaffeux@gmail.com> Co-authored-by: Martin Brennan <martin@discourse.org>
2023-11-21 00:56:43 -05:00
end
def find_tools(partial)
return [] if !partial.include?("</invoke>")
parsed_function = Nokogiri::HTML5.fragment(partial)
parsed_function.css("invoke").map { |fragment| find_tool(fragment) }.compact
end
protected
def find_tool(parsed_function)
function_id = parsed_function.at("tool_id")&.text
function_name = parsed_function.at("tool_name")&.text
return nil if function_name.nil?
tool_klass = available_tools.find { |c| c.signature.dig(:name) == function_name }
return nil if tool_klass.nil?
arguments = {}
tool_klass.signature[:parameters].to_a.each do |param|
name = param[:name]
value = parsed_function.at(name)&.text
if param[:type] == "array" && value
value =
begin
JSON.parse(value)
rescue JSON::ParserError
[value.to_s]
end
end
arguments[name.to_sym] = value if value
end
tool_klass.new(
arguments,
tool_call_id: function_id || function_name,
persona_options: options[tool_klass].to_h,
)
end
FEATURE: Add Question Consolidator for robust Upload support in Personas (#596) This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments. Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer. EG: - User: how many cars are there in europe - Model: detailed answer about cars in europe including the term car and vehicle many times - User: Nice, what about trains are there in the US In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal. Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content. The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui. This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation. Key changes: 1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation. 2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt. 3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question. 4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration. 5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality. This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
2024-04-29 23:49:21 -04:00
def rag_fragments_prompt(conversation_context, llm:, user:)
upload_refs =
UploadReference.where(target_id: id, target_type: "AiPersona").pluck(:upload_id)
return nil if !SiteSetting.ai_embeddings_enabled?
return nil if conversation_context.blank? || upload_refs.blank?
latest_interactions =
FEATURE: Add Question Consolidator for robust Upload support in Personas (#596) This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments. Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer. EG: - User: how many cars are there in europe - Model: detailed answer about cars in europe including the term car and vehicle many times - User: Nice, what about trains are there in the US In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal. Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content. The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui. This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation. Key changes: 1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation. 2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt. 3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question. 4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration. 5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality. This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
2024-04-29 23:49:21 -04:00
conversation_context.select { |ctx| %i[model user].include?(ctx[:type]) }.last(10)
return nil if latest_interactions.empty?
# first response
if latest_interactions.length == 1
consolidated_question = latest_interactions[0][:content]
else
consolidated_question =
DiscourseAi::AiBot::QuestionConsolidator.consolidate_question(
llm,
latest_interactions,
user,
)
end
return nil if !consolidated_question
strategy = DiscourseAi::Embeddings::Strategies::Truncation.new
vector_rep =
DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(strategy)
reranker = DiscourseAi::Inference::HuggingFaceTextEmbeddings
FEATURE: Add Question Consolidator for robust Upload support in Personas (#596) This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments. Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer. EG: - User: how many cars are there in europe - Model: detailed answer about cars in europe including the term car and vehicle many times - User: Nice, what about trains are there in the US In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal. Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content. The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui. This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation. Key changes: 1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation. 2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt. 3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question. 4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration. 5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality. This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
2024-04-29 23:49:21 -04:00
interactions_vector = vector_rep.vector_from(consolidated_question)
rag_conversation_chunks = self.class.rag_conversation_chunks
candidate_fragment_ids =
vector_rep.asymmetric_rag_fragment_similarity_search(
interactions_vector,
persona_id: id,
limit:
(
if reranker.reranker_configured?
rag_conversation_chunks * 5
else
rag_conversation_chunks
end
),
offset: 0,
)
fragments =
RagDocumentFragment.where(upload_id: upload_refs, id: candidate_fragment_ids).pluck(
:fragment,
:metadata,
)
if reranker.reranker_configured?
guidance = fragments.map { |fragment, _metadata| fragment }
ranks =
DiscourseAi::Inference::HuggingFaceTextEmbeddings
.rerank(conversation_context.last[:content], guidance)
.to_a
.take(rag_conversation_chunks)
.map { _1[:index] }
if ranks.empty?
fragments = fragments.take(rag_conversation_chunks)
else
fragments = ranks.map { |idx| fragments[idx] }
end
end
<<~TEXT
<guidance>
The following texts will give you additional guidance for your response.
We included them because we believe they are relevant to this conversation topic.
Texts:
#{
fragments
.map do |fragment, metadata|
if metadata.present?
["# #{metadata}", fragment].join("\n")
else
fragment
end
end
.join("\n")
}
</guidance>
TEXT
end
end
end
end
end