discourse-ai/spec/lib/modules/nsfw/nsfw_classification_spec.rb

104 lines
3.2 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
require "rails_helper"
require_relative "../../../support/nsfw_inference_stubs"
describe DiscourseAi::Nsfw::Classification do
before { SiteSetting.ai_nsfw_inference_service_api_endpoint = "http://test.com" }
let(:available_models) { SiteSetting.ai_nsfw_models.split("|") }
fab!(:upload_1) { Fabricate(:s3_image_upload) }
fab!(:post) { Fabricate(:post, uploads: [upload_1]) }
describe "#request" do
def assert_correctly_classified(results, expected)
available_models.each { |model| expect(results[model]).to eq(expected[model]) }
end
def build_expected_classification(target, positive: true)
available_models.reduce({}) do |memo, model|
model_expected =
if positive
NSFWInferenceStubs.positive_result(model)
else
NSFWInferenceStubs.negative_result(model)
end
memo[model] = {
target.id => model_expected.merge(target_classified_type: target.class.name),
}
memo
end
end
context "when the target has one upload" do
it "returns the classification and the model used for it" do
NSFWInferenceStubs.positive(upload_1)
expected = build_expected_classification(upload_1)
classification = subject.request(post)
assert_correctly_classified(classification, expected)
end
context "when the target has multiple uploads" do
fab!(:upload_2) { Fabricate(:upload) }
before { post.uploads << upload_2 }
it "returns a classification for each one" do
NSFWInferenceStubs.positive(upload_1)
NSFWInferenceStubs.negative(upload_2)
expected_classification = build_expected_classification(upload_1)
expected_classification.deep_merge!(
build_expected_classification(upload_2, positive: false),
)
classification = subject.request(post)
assert_correctly_classified(classification, expected_classification)
end
it "correctly skips unsupported uploads" do
NSFWInferenceStubs.positive(upload_1)
NSFWInferenceStubs.unsupported(upload_2)
expected_classification = build_expected_classification(upload_1)
classification = subject.request(post)
assert_correctly_classified(classification, expected_classification)
end
end
end
end
describe "#should_flag_based_on?" do
before { SiteSetting.ai_nsfw_flag_automatically = true }
let(:positive_verdict) { { "opennsfw2" => true, "nsfw_detector" => true } }
let(:negative_verdict) { { "opennsfw2" => false } }
2024-01-19 06:51:26 -05:00
it "returns false when NSFW flagging is disabled" do
SiteSetting.ai_nsfw_flag_automatically = false
should_flag = subject.should_flag_based_on?(positive_verdict)
expect(should_flag).to eq(false)
end
it "returns true if the response is NSFW based on our thresholds" do
should_flag = subject.should_flag_based_on?(positive_verdict)
expect(should_flag).to eq(true)
end
it "returns false if the response is safe based on our thresholds" do
should_flag = subject.should_flag_based_on?(negative_verdict)
expect(should_flag).to eq(false)
end
end
end