discourse-ai/app/jobs/scheduled/embeddings_backfill.rb

133 lines
3.8 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
module Jobs
class EmbeddingsBackfill < ::Jobs::Scheduled
every 15.minutes
sidekiq_options queue: "low"
cluster_concurrency 1
def execute(args)
return unless SiteSetting.ai_embeddings_enabled
limit = SiteSetting.ai_embeddings_backfill_batch_size
if limit > 50_000
limit = 50_000
Rails.logger.warn(
"Limiting backfill batch size to 50,000 to avoid OOM errors, reduce ai_embeddings_backfill_batch_size to avoid this warning",
)
end
rebaked = 0
strategy = DiscourseAi::Embeddings::Strategies::Truncation.new
vector_rep =
DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(strategy)
2023-12-29 10:28:45 -05:00
table_name = vector_rep.topic_table_name
topics =
Topic
.joins("LEFT JOIN #{table_name} ON #{table_name}.topic_id = topics.id")
.where(archetype: Archetype.default)
.where(deleted_at: nil)
.order("topics.bumped_at DESC")
.limit(limit - rebaked)
rebaked += populate_topic_embeddings(vector_rep, topics)
vector_rep.consider_indexing
return if rebaked >= limit
# Then, we'll try to backfill embeddings for topics that have outdated
# embeddings, be it model or strategy version
relation = topics.where(<<~SQL)
#{table_name}.model_version < #{vector_rep.version}
OR
#{table_name}.strategy_version < #{strategy.version}
SQL
rebaked += populate_topic_embeddings(vector_rep, relation)
return if rebaked >= limit
# Finally, we'll try to backfill embeddings for topics that have outdated
# embeddings due to edits or new replies. Here we only do 10% of the limit
relation =
topics.where("#{table_name}.updated_at < ?", 7.days.ago).limit((limit - rebaked) / 10)
populate_topic_embeddings(vector_rep, relation)
2023-12-29 10:28:45 -05:00
return if rebaked >= limit
return unless SiteSetting.ai_embeddings_per_post_enabled
2023-12-29 10:28:45 -05:00
# Now for posts
table_name = vector_rep.post_table_name
posts =
Post
.joins("LEFT JOIN #{table_name} ON #{table_name}.post_id = posts.id")
.where(deleted_at: nil)
.limit(limit - rebaked)
# First, we'll try to backfill embeddings for posts that have none
posts
.where("#{table_name}.post_id IS NULL")
.find_each do |t|
vector_rep.generate_representation_from(t)
rebaked += 1
end
vector_rep.consider_indexing
return if rebaked >= limit
# Then, we'll try to backfill embeddings for posts that have outdated
# embeddings, be it model or strategy version
posts
.where(<<~SQL)
#{table_name}.model_version < #{vector_rep.version}
OR
#{table_name}.strategy_version < #{strategy.version}
SQL
.find_each do |t|
vector_rep.generate_representation_from(t)
rebaked += 1
end
return if rebaked >= limit
# Finally, we'll try to backfill embeddings for posts that have outdated
# embeddings due to edits. Here we only do 10% of the limit
posts
.where("#{table_name}.updated_at < ?", 7.days.ago)
.order("random()")
.limit((limit - rebaked) / 10)
.pluck(:id)
.each do |id|
vector_rep.generate_representation_from(Post.find_by(id: id))
rebaked += 1
end
rebaked
end
private
def populate_topic_embeddings(vector_rep, topics)
done = 0
ids = topics.where("#{vector_rep.topic_table_name}.topic_id IS NULL").pluck("topics.id")
ids.each do |id|
topic = Topic.find_by(id: id)
if topic
vector_rep.generate_representation_from(topic)
done += 1
end
end
done
end
end
end