discourse-ai/lib/embeddings/vector.rb

77 lines
2.3 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
module DiscourseAi
module Embeddings
class Vector
def self.instance
new(DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation)
end
def initialize(vector_definition)
@vdef = vector_definition
end
def gen_bulk_reprensentations(relation)
http_pool_size = 100
pool =
Concurrent::CachedThreadPool.new(
min_threads: 0,
max_threads: http_pool_size,
idletime: 30,
)
schema = DiscourseAi::Embeddings::Schema.for(relation.first.class, vector_def: vdef)
embedding_gen = vdef.inference_client
promised_embeddings =
relation
.map do |record|
prepared_text = vdef.prepare_target_text(record)
next if prepared_text.blank?
new_digest = OpenSSL::Digest::SHA1.hexdigest(prepared_text)
next if schema.find_by_target(record)&.digest == new_digest
Concurrent::Promises
.fulfilled_future({ target: record, text: prepared_text, digest: new_digest }, pool)
.then_on(pool) do |w_prepared_text|
w_prepared_text.merge(embedding: embedding_gen.perform!(w_prepared_text[:text]))
end
end
.compact
Concurrent::Promises
.zip(*promised_embeddings)
.value!
.each { |e| schema.store(e[:target], e[:embedding], e[:digest]) }
pool.shutdown
pool.wait_for_termination
end
def generate_representation_from(target)
text = vdef.prepare_target_text(target)
return if text.blank?
schema = DiscourseAi::Embeddings::Schema.for(target.class, vector_def: vdef)
new_digest = OpenSSL::Digest::SHA1.hexdigest(text)
return if schema.find_by_target(target)&.digest == new_digest
embeddings = vdef.inference_client.perform!(text)
schema.store(target, embeddings, new_digest)
end
def vector_from(text, asymetric: false)
prepared_text = vdef.prepare_query_text(text, asymetric: asymetric)
return if prepared_text.blank?
vdef.inference_client.perform!(prepared_text)
end
attr_reader :vdef
end
end
end