This reverts commit 85fca89e01
.
This commit is contained in:
parent
85fca89e01
commit
392e2e8aef
|
@ -251,12 +251,3 @@ en:
|
|||
configuration_hint:
|
||||
one: "Make sure the `%{settings}` setting was configured."
|
||||
other: "Make sure these settings were configured: %{settings}"
|
||||
|
||||
embeddings:
|
||||
configuration:
|
||||
disable_embeddings: "You have to disable 'ai embeddings enabled' first."
|
||||
choose_model: "Set 'ai embeddings model' first."
|
||||
model_unreachable: "We failed to generate a test embedding with this model. Check your settings are correct."
|
||||
hint:
|
||||
one: "Make sure the `%{settings}` setting was configured."
|
||||
other: "Make sure the settings of the provider you want were configured. Options are: %{settings}"
|
||||
|
|
|
@ -216,7 +216,6 @@ discourse_ai:
|
|||
ai_embeddings_enabled:
|
||||
default: false
|
||||
client: true
|
||||
validator: "DiscourseAi::Configuration::EmbeddingsDependencyValidator"
|
||||
ai_embeddings_discourse_service_api_endpoint: ""
|
||||
ai_embeddings_discourse_service_api_endpoint_srv:
|
||||
default: ""
|
||||
|
@ -226,10 +225,17 @@ discourse_ai:
|
|||
secret: true
|
||||
ai_embeddings_model:
|
||||
type: enum
|
||||
default: ""
|
||||
list_type: compact
|
||||
default: "bge-large-en"
|
||||
allow_any: false
|
||||
enum: "DiscourseAi::Configuration::EmbeddingsModelEnumerator"
|
||||
validator: "DiscourseAi::Configuration::EmbeddingsModelValidator"
|
||||
choices:
|
||||
- all-mpnet-base-v2
|
||||
- text-embedding-ada-002
|
||||
- text-embedding-3-small
|
||||
- text-embedding-3-large
|
||||
- multilingual-e5-large
|
||||
- bge-large-en
|
||||
- gemini
|
||||
ai_embeddings_per_post_enabled:
|
||||
default: false
|
||||
hidden: true
|
||||
|
|
|
@ -1,21 +0,0 @@
|
|||
# frozen_string_literal: true
|
||||
|
||||
module DiscourseAi
|
||||
module Configuration
|
||||
class EmbeddingsDependencyValidator
|
||||
def initialize(opts = {})
|
||||
@opts = opts
|
||||
end
|
||||
|
||||
def valid_value?(val)
|
||||
return true if val == "f"
|
||||
|
||||
SiteSetting.ai_embeddings_model.present?
|
||||
end
|
||||
|
||||
def error_message
|
||||
I18n.t("discourse_ai.embeddings.configuration.choose_model")
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -1,25 +0,0 @@
|
|||
# frozen_string_literal: true
|
||||
|
||||
require "enum_site_setting"
|
||||
|
||||
module DiscourseAi
|
||||
module Configuration
|
||||
class EmbeddingsModelEnumerator < ::EnumSiteSetting
|
||||
def self.valid_value?(val)
|
||||
true
|
||||
end
|
||||
|
||||
def self.values
|
||||
%w[
|
||||
all-mpnet-base-v2
|
||||
text-embedding-ada-002
|
||||
text-embedding-3-small
|
||||
text-embedding-3-large
|
||||
multilingual-e5-large
|
||||
bge-large-en
|
||||
gemini
|
||||
]
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -1,56 +0,0 @@
|
|||
# frozen_string_literal: true
|
||||
|
||||
module DiscourseAi
|
||||
module Configuration
|
||||
class EmbeddingsModelValidator
|
||||
def initialize(opts = {})
|
||||
@opts = opts
|
||||
end
|
||||
|
||||
def valid_value?(val)
|
||||
if val == ""
|
||||
@embeddings_enabled = SiteSetting.ai_embeddings_enabled
|
||||
return !@embeddings_enabled
|
||||
end
|
||||
|
||||
representation =
|
||||
DiscourseAi::Embeddings::VectorRepresentations::Base.find_representation(val)
|
||||
|
||||
return false if representation.nil?
|
||||
|
||||
# Skip config for tests. We stub embeddings generation anyway.
|
||||
return true if Rails.env.test? && val
|
||||
|
||||
if !representation.correctly_configured?
|
||||
@representation = representation
|
||||
return false
|
||||
end
|
||||
|
||||
if !can_generate_embeddings?(val)
|
||||
@unreachable = true
|
||||
return false
|
||||
end
|
||||
|
||||
true
|
||||
end
|
||||
|
||||
def error_message
|
||||
if @embeddings_enabled
|
||||
return(I18n.t("discourse_ai.embeddings.configuration.disable_embeddings"))
|
||||
end
|
||||
|
||||
return(I18n.t("discourse_ai.embeddings.configuration.model_unreachable")) if @unreachable
|
||||
|
||||
@representation&.configuration_hint
|
||||
end
|
||||
|
||||
def can_generate_embeddings?(val)
|
||||
DiscourseAi::Embeddings::VectorRepresentations::Base
|
||||
.find_representation(val)
|
||||
.new(DiscourseAi::Embeddings::Strategies::Truncation.new)
|
||||
.vector_from("this is a test")
|
||||
.present?
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -4,34 +4,19 @@ module DiscourseAi
|
|||
module Embeddings
|
||||
module VectorRepresentations
|
||||
class AllMpnetBaseV2 < Base
|
||||
class << self
|
||||
def name
|
||||
"all-mpnet-base-v2"
|
||||
end
|
||||
|
||||
def correctly_configured?
|
||||
SiteSetting.ai_embeddings_discourse_service_api_endpoint_srv.present? ||
|
||||
SiteSetting.ai_embeddings_discourse_service_api_endpoint.present?
|
||||
end
|
||||
|
||||
def dependant_setting_names
|
||||
%w[
|
||||
ai_embeddings_discourse_service_api_key
|
||||
ai_embeddings_discourse_service_api_endpoint_srv
|
||||
ai_embeddings_discourse_service_api_endpoint
|
||||
]
|
||||
end
|
||||
end
|
||||
|
||||
def vector_from(text)
|
||||
DiscourseAi::Inference::DiscourseClassifier.perform!(
|
||||
"#{discourse_embeddings_endpoint}/api/v1/classify",
|
||||
self.class.name,
|
||||
name,
|
||||
text,
|
||||
SiteSetting.ai_embeddings_discourse_service_api_key,
|
||||
)
|
||||
end
|
||||
|
||||
def name
|
||||
"all-mpnet-base-v2"
|
||||
end
|
||||
|
||||
def dimensions
|
||||
768
|
||||
end
|
||||
|
|
|
@ -4,8 +4,7 @@ module DiscourseAi
|
|||
module Embeddings
|
||||
module VectorRepresentations
|
||||
class Base
|
||||
class << self
|
||||
def find_representation(model_name)
|
||||
def self.current_representation(strategy)
|
||||
# we are explicit here cause the loader may have not
|
||||
# loaded the subclasses yet
|
||||
[
|
||||
|
@ -16,29 +15,7 @@ module DiscourseAi
|
|||
DiscourseAi::Embeddings::VectorRepresentations::TextEmbeddingAda002,
|
||||
DiscourseAi::Embeddings::VectorRepresentations::TextEmbedding3Small,
|
||||
DiscourseAi::Embeddings::VectorRepresentations::TextEmbedding3Large,
|
||||
].find { _1.name == model_name }
|
||||
end
|
||||
|
||||
def current_representation(strategy)
|
||||
find_representation(SiteSetting.ai_embeddings_model).new(strategy)
|
||||
end
|
||||
|
||||
def correctly_configured?
|
||||
raise NotImplementedError
|
||||
end
|
||||
|
||||
def dependant_setting_names
|
||||
raise NotImplementedError
|
||||
end
|
||||
|
||||
def configuration_hint
|
||||
settings = dependant_setting_names
|
||||
I18n.t(
|
||||
"discourse_ai.embeddings.configuration.hint",
|
||||
settings: settings.join(", "),
|
||||
count: settings.length,
|
||||
)
|
||||
end
|
||||
].map { _1.new(strategy) }.find { _1.name == SiteSetting.ai_embeddings_model }
|
||||
end
|
||||
|
||||
def initialize(strategy)
|
||||
|
|
|
@ -4,32 +4,6 @@ module DiscourseAi
|
|||
module Embeddings
|
||||
module VectorRepresentations
|
||||
class BgeLargeEn < Base
|
||||
class << self
|
||||
def name
|
||||
"bge-large-en"
|
||||
end
|
||||
|
||||
def correctly_configured?
|
||||
SiteSetting.ai_cloudflare_workers_api_token.present? ||
|
||||
DiscourseAi::Inference::HuggingFaceTextEmbeddings.configured? ||
|
||||
(
|
||||
SiteSetting.ai_embeddings_discourse_service_api_endpoint_srv.present? ||
|
||||
SiteSetting.ai_embeddings_discourse_service_api_endpoint.present?
|
||||
)
|
||||
end
|
||||
|
||||
def dependant_setting_names
|
||||
%w[
|
||||
ai_cloudflare_workers_api_token
|
||||
ai_hugging_face_tei_endpoint_srv
|
||||
ai_hugging_face_tei_endpoint
|
||||
ai_embeddings_discourse_service_api_key
|
||||
ai_embeddings_discourse_service_api_endpoint_srv
|
||||
ai_embeddings_discourse_service_api_endpoint
|
||||
]
|
||||
end
|
||||
end
|
||||
|
||||
def vector_from(text)
|
||||
if SiteSetting.ai_cloudflare_workers_api_token.present?
|
||||
DiscourseAi::Inference::CloudflareWorkersAi
|
||||
|
@ -51,6 +25,10 @@ module DiscourseAi
|
|||
end
|
||||
end
|
||||
|
||||
def name
|
||||
"bge-large-en"
|
||||
end
|
||||
|
||||
def inference_model_name
|
||||
"baai/bge-large-en-v1.5"
|
||||
end
|
||||
|
|
|
@ -4,20 +4,6 @@ module DiscourseAi
|
|||
module Embeddings
|
||||
module VectorRepresentations
|
||||
class Gemini < Base
|
||||
class << self
|
||||
def name
|
||||
"gemini"
|
||||
end
|
||||
|
||||
def correctly_configured?
|
||||
SiteSetting.ai_gemini_api_key.present?
|
||||
end
|
||||
|
||||
def dependant_setting_names
|
||||
%w[ai_gemini_api_key]
|
||||
end
|
||||
end
|
||||
|
||||
def id
|
||||
5
|
||||
end
|
||||
|
@ -26,6 +12,10 @@ module DiscourseAi
|
|||
1
|
||||
end
|
||||
|
||||
def name
|
||||
"gemini"
|
||||
end
|
||||
|
||||
def dimensions
|
||||
768
|
||||
end
|
||||
|
|
|
@ -4,30 +4,6 @@ module DiscourseAi
|
|||
module Embeddings
|
||||
module VectorRepresentations
|
||||
class MultilingualE5Large < Base
|
||||
class << self
|
||||
def name
|
||||
"multilingual-e5-large"
|
||||
end
|
||||
|
||||
def correctly_configured?
|
||||
DiscourseAi::Inference::HuggingFaceTextEmbeddings.configured? ||
|
||||
(
|
||||
SiteSetting.ai_embeddings_discourse_service_api_endpoint_srv.present? ||
|
||||
SiteSetting.ai_embeddings_discourse_service_api_endpoint.present?
|
||||
)
|
||||
end
|
||||
|
||||
def dependant_setting_names
|
||||
%w[
|
||||
ai_hugging_face_tei_endpoint_srv
|
||||
ai_hugging_face_tei_endpoint
|
||||
ai_embeddings_discourse_service_api_key
|
||||
ai_embeddings_discourse_service_api_endpoint_srv
|
||||
ai_embeddings_discourse_service_api_endpoint
|
||||
]
|
||||
end
|
||||
end
|
||||
|
||||
def vector_from(text)
|
||||
if DiscourseAi::Inference::HuggingFaceTextEmbeddings.configured?
|
||||
truncated_text = tokenizer.truncate(text, max_sequence_length - 2)
|
||||
|
@ -35,7 +11,7 @@ module DiscourseAi
|
|||
elsif discourse_embeddings_endpoint.present?
|
||||
DiscourseAi::Inference::DiscourseClassifier.perform!(
|
||||
"#{discourse_embeddings_endpoint}/api/v1/classify",
|
||||
self.class.name,
|
||||
name,
|
||||
"query: #{text}",
|
||||
SiteSetting.ai_embeddings_discourse_service_api_key,
|
||||
)
|
||||
|
@ -52,6 +28,10 @@ module DiscourseAi
|
|||
1
|
||||
end
|
||||
|
||||
def name
|
||||
"multilingual-e5-large"
|
||||
end
|
||||
|
||||
def dimensions
|
||||
1024
|
||||
end
|
||||
|
|
|
@ -4,20 +4,6 @@ module DiscourseAi
|
|||
module Embeddings
|
||||
module VectorRepresentations
|
||||
class TextEmbedding3Large < Base
|
||||
class << self
|
||||
def name
|
||||
"text-embedding-3-large"
|
||||
end
|
||||
|
||||
def correctly_configured?
|
||||
SiteSetting.ai_openai_api_key.present?
|
||||
end
|
||||
|
||||
def dependant_setting_names
|
||||
%w[ai_openai_api_key]
|
||||
end
|
||||
end
|
||||
|
||||
def id
|
||||
7
|
||||
end
|
||||
|
@ -26,6 +12,10 @@ module DiscourseAi
|
|||
1
|
||||
end
|
||||
|
||||
def name
|
||||
"text-embedding-3-large"
|
||||
end
|
||||
|
||||
def dimensions
|
||||
# real dimentions are 3072, but we only support up to 2000 in the
|
||||
# indexes, so we downsample to 2000 via API
|
||||
|
@ -48,7 +38,7 @@ module DiscourseAi
|
|||
response =
|
||||
DiscourseAi::Inference::OpenAiEmbeddings.perform!(
|
||||
text,
|
||||
model: self.clas.name,
|
||||
model: name,
|
||||
dimensions: dimensions,
|
||||
)
|
||||
response[:data].first[:embedding]
|
||||
|
|
|
@ -4,20 +4,6 @@ module DiscourseAi
|
|||
module Embeddings
|
||||
module VectorRepresentations
|
||||
class TextEmbedding3Small < Base
|
||||
class << self
|
||||
def name
|
||||
"text-embedding-3-small"
|
||||
end
|
||||
|
||||
def correctly_configured?
|
||||
SiteSetting.ai_openai_api_key.present?
|
||||
end
|
||||
|
||||
def dependant_setting_names
|
||||
%w[ai_openai_api_key]
|
||||
end
|
||||
end
|
||||
|
||||
def id
|
||||
6
|
||||
end
|
||||
|
@ -26,6 +12,10 @@ module DiscourseAi
|
|||
1
|
||||
end
|
||||
|
||||
def name
|
||||
"text-embedding-3-small"
|
||||
end
|
||||
|
||||
def dimensions
|
||||
1536
|
||||
end
|
||||
|
@ -43,7 +33,7 @@ module DiscourseAi
|
|||
end
|
||||
|
||||
def vector_from(text)
|
||||
response = DiscourseAi::Inference::OpenAiEmbeddings.perform!(text, model: self.class.name)
|
||||
response = DiscourseAi::Inference::OpenAiEmbeddings.perform!(text, model: name)
|
||||
response[:data].first[:embedding]
|
||||
end
|
||||
|
||||
|
|
|
@ -4,20 +4,6 @@ module DiscourseAi
|
|||
module Embeddings
|
||||
module VectorRepresentations
|
||||
class TextEmbeddingAda002 < Base
|
||||
class << self
|
||||
def name
|
||||
"text-embedding-ada-002"
|
||||
end
|
||||
|
||||
def correctly_configured?
|
||||
SiteSetting.ai_openai_api_key.present?
|
||||
end
|
||||
|
||||
def dependant_setting_names
|
||||
%w[ai_openai_api_key]
|
||||
end
|
||||
end
|
||||
|
||||
def id
|
||||
2
|
||||
end
|
||||
|
@ -26,6 +12,10 @@ module DiscourseAi
|
|||
1
|
||||
end
|
||||
|
||||
def name
|
||||
"text-embedding-ada-002"
|
||||
end
|
||||
|
||||
def dimensions
|
||||
1536
|
||||
end
|
||||
|
@ -43,7 +33,7 @@ module DiscourseAi
|
|||
end
|
||||
|
||||
def vector_from(text)
|
||||
response = DiscourseAi::Inference::OpenAiEmbeddings.perform!(text, model: self.class.name)
|
||||
response = DiscourseAi::Inference::OpenAiEmbeddings.perform!(text, model: name)
|
||||
response[:data].first[:embedding]
|
||||
end
|
||||
|
||||
|
|
|
@ -25,7 +25,6 @@ RSpec.describe Jobs::EmbeddingsBackfill do
|
|||
end
|
||||
|
||||
it "backfills topics based on bumped_at date" do
|
||||
SiteSetting.ai_embeddings_model = "bge-large-en"
|
||||
SiteSetting.ai_embeddings_enabled = true
|
||||
SiteSetting.ai_embeddings_discourse_service_api_endpoint = "http://test.com"
|
||||
SiteSetting.ai_embeddings_backfill_batch_size = 1
|
||||
|
|
|
@ -70,7 +70,6 @@ RSpec.describe DiscourseAi::AiBot::Tools::Search do
|
|||
SiteSetting.ai_embeddings_semantic_search_hyde_model = "fake:fake"
|
||||
SiteSetting.ai_embeddings_semantic_search_enabled = true
|
||||
SiteSetting.ai_embeddings_discourse_service_api_endpoint = "http://test.com"
|
||||
SiteSetting.ai_embeddings_model = "bge-large-en"
|
||||
|
||||
hyde_embedding = [0.049382, 0.9999]
|
||||
EmbeddingsGenerationStubs.discourse_service(
|
||||
|
|
|
@ -13,8 +13,6 @@ describe DiscourseAi::Embeddings::EntryPoint do
|
|||
)
|
||||
end
|
||||
|
||||
before { SiteSetting.ai_embeddings_model = "bge-large-en" }
|
||||
|
||||
it "queues a job on create if embeddings is enabled" do
|
||||
SiteSetting.ai_embeddings_enabled = true
|
||||
|
||||
|
|
|
@ -6,8 +6,8 @@ RSpec.describe Jobs::GenerateEmbeddings do
|
|||
describe "#execute" do
|
||||
before do
|
||||
SiteSetting.ai_embeddings_discourse_service_api_endpoint = "http://test.com"
|
||||
SiteSetting.ai_embeddings_model = "bge-large-en"
|
||||
SiteSetting.ai_embeddings_enabled = true
|
||||
SiteSetting.ai_embeddings_model = "bge-large-en"
|
||||
end
|
||||
|
||||
fab!(:topic) { Fabricate(:topic) }
|
||||
|
@ -27,7 +27,7 @@ RSpec.describe Jobs::GenerateEmbeddings do
|
|||
vector_rep.tokenizer,
|
||||
vector_rep.max_sequence_length - 2,
|
||||
)
|
||||
EmbeddingsGenerationStubs.discourse_service(vector_rep.class.name, text, expected_embedding)
|
||||
EmbeddingsGenerationStubs.discourse_service(vector_rep.name, text, expected_embedding)
|
||||
|
||||
job.execute(target_id: topic.id, target_type: "Topic")
|
||||
|
||||
|
@ -39,7 +39,7 @@ RSpec.describe Jobs::GenerateEmbeddings do
|
|||
|
||||
text =
|
||||
truncation.prepare_text_from(post, vector_rep.tokenizer, vector_rep.max_sequence_length - 2)
|
||||
EmbeddingsGenerationStubs.discourse_service(vector_rep.class.name, text, expected_embedding)
|
||||
EmbeddingsGenerationStubs.discourse_service(vector_rep.name, text, expected_embedding)
|
||||
|
||||
job.execute(target_id: post.id, target_type: "Post")
|
||||
|
||||
|
|
|
@ -13,10 +13,7 @@ describe DiscourseAi::Embeddings::SemanticRelated do
|
|||
fab!(:secured_category_topic) { Fabricate(:topic, category: secured_category) }
|
||||
fab!(:closed_topic) { Fabricate(:topic, closed: true) }
|
||||
|
||||
before do
|
||||
SiteSetting.ai_embeddings_model = "bge-large-en"
|
||||
SiteSetting.ai_embeddings_semantic_related_topics_enabled = true
|
||||
end
|
||||
before { SiteSetting.ai_embeddings_semantic_related_topics_enabled = true }
|
||||
|
||||
describe "#related_topic_ids_for" do
|
||||
context "when embeddings do not exist" do
|
||||
|
|
|
@ -14,7 +14,6 @@ RSpec.describe DiscourseAi::Embeddings::SemanticSearch do
|
|||
|
||||
before do
|
||||
SiteSetting.ai_embeddings_discourse_service_api_endpoint = "http://test.com"
|
||||
SiteSetting.ai_embeddings_model = "bge-large-en"
|
||||
|
||||
hyde_embedding = [0.049382, 0.9999]
|
||||
EmbeddingsGenerationStubs.discourse_service(
|
||||
|
|
|
@ -4,8 +4,6 @@ describe DiscourseAi::Embeddings::EntryPoint do
|
|||
fab!(:user) { Fabricate(:user) }
|
||||
|
||||
describe "SemanticTopicQuery extension" do
|
||||
before { SiteSetting.ai_embeddings_model = "bge-large-en" }
|
||||
|
||||
describe "#list_semantic_related_topics" do
|
||||
subject(:topic_query) { DiscourseAi::Embeddings::SemanticTopicQuery.new(user) }
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@ RSpec.describe DiscourseAi::Embeddings::VectorRepresentations::AllMpnetBaseV2 do
|
|||
before { SiteSetting.ai_embeddings_discourse_service_api_endpoint = "http://test.com" }
|
||||
|
||||
def stub_vector_mapping(text, expected_embedding)
|
||||
EmbeddingsGenerationStubs.discourse_service(described_class.name, text, expected_embedding)
|
||||
EmbeddingsGenerationStubs.discourse_service(vector_rep.name, text, expected_embedding)
|
||||
end
|
||||
|
||||
it_behaves_like "generates and store embedding using with vector representation"
|
||||
|
|
|
@ -11,7 +11,7 @@ RSpec.describe DiscourseAi::Embeddings::VectorRepresentations::MultilingualE5Lar
|
|||
|
||||
def stub_vector_mapping(text, expected_embedding)
|
||||
EmbeddingsGenerationStubs.discourse_service(
|
||||
described_class.name,
|
||||
vector_rep.name,
|
||||
"query: #{text}",
|
||||
expected_embedding,
|
||||
)
|
||||
|
|
|
@ -8,7 +8,7 @@ RSpec.describe DiscourseAi::Embeddings::VectorRepresentations::TextEmbeddingAda0
|
|||
let(:truncation) { DiscourseAi::Embeddings::Strategies::Truncation.new }
|
||||
|
||||
def stub_vector_mapping(text, expected_embedding)
|
||||
EmbeddingsGenerationStubs.openai_service(described_class.name, text, expected_embedding)
|
||||
EmbeddingsGenerationStubs.openai_service(vector_rep.name, text, expected_embedding)
|
||||
end
|
||||
|
||||
it_behaves_like "generates and store embedding using with vector representation"
|
||||
|
|
|
@ -327,10 +327,7 @@ RSpec.describe "AI Composer helper", type: :system, js: true do
|
|||
end
|
||||
|
||||
context "when suggesting the category with AI category suggester" do
|
||||
before do
|
||||
SiteSetting.ai_embeddings_model = "bge-large-en"
|
||||
SiteSetting.ai_embeddings_enabled = true
|
||||
end
|
||||
before { SiteSetting.ai_embeddings_enabled = true }
|
||||
|
||||
it "updates the category with the suggested category" do
|
||||
response =
|
||||
|
@ -355,10 +352,7 @@ RSpec.describe "AI Composer helper", type: :system, js: true do
|
|||
end
|
||||
|
||||
context "when suggesting the tags with AI tag suggester" do
|
||||
before do
|
||||
SiteSetting.ai_embeddings_model = "bge-large-en"
|
||||
SiteSetting.ai_embeddings_enabled = true
|
||||
end
|
||||
before { SiteSetting.ai_embeddings_enabled = true }
|
||||
|
||||
it "updates the tag with the suggested tag" do
|
||||
response =
|
||||
|
|
|
@ -80,10 +80,7 @@ RSpec.describe "AI Post helper", type: :system, js: true do
|
|||
end
|
||||
|
||||
context "when suggesting categories with AI category suggester" do
|
||||
before do
|
||||
SiteSetting.ai_embeddings_model = "bge-large-en"
|
||||
SiteSetting.ai_embeddings_enabled = true
|
||||
end
|
||||
before { SiteSetting.ai_embeddings_enabled = true }
|
||||
|
||||
skip "TODO: Category suggester only loading one category in test" do
|
||||
it "updates the category with the suggested category" do
|
||||
|
@ -111,10 +108,7 @@ RSpec.describe "AI Post helper", type: :system, js: true do
|
|||
end
|
||||
|
||||
context "when suggesting tags with AI tag suggester" do
|
||||
before do
|
||||
SiteSetting.ai_embeddings_model = "bge-large-en"
|
||||
SiteSetting.ai_embeddings_enabled = true
|
||||
end
|
||||
before { SiteSetting.ai_embeddings_enabled = true }
|
||||
|
||||
it "update the tag with the suggested tag" do
|
||||
response =
|
||||
|
|
|
@ -11,7 +11,6 @@ RSpec.describe "AI Composer helper", type: :system, js: true do
|
|||
|
||||
before do
|
||||
SiteSetting.ai_embeddings_discourse_service_api_endpoint = "http://test.com"
|
||||
SiteSetting.ai_embeddings_model = "bge-large-en"
|
||||
prompt = DiscourseAi::Embeddings::HydeGenerators::OpenAi.new.prompt(query)
|
||||
OpenAiCompletionsInferenceStubs.stub_response(
|
||||
prompt,
|
||||
|
|
Loading…
Reference in New Issue