PERF: .find_each instead of .find to save us from memory allocation peaks
also Fix embeddings rake task for new db structure
This commit is contained in:
parent
5f0c617880
commit
703762a7a9
|
@ -52,7 +52,7 @@ module DiscourseAi
|
||||||
end
|
end
|
||||||
t << "\n\n"
|
t << "\n\n"
|
||||||
|
|
||||||
topic.posts.each do |post|
|
topic.posts.find_each do |post|
|
||||||
t << post.raw
|
t << post.raw
|
||||||
break if @tokenizer.size(t) >= @max_length
|
break if @tokenizer.size(t) >= @max_length
|
||||||
t << "\n\n"
|
t << "\n\n"
|
||||||
|
|
|
@ -1,33 +1,21 @@
|
||||||
# frozen_string_literal: true
|
# frozen_string_literal: true
|
||||||
|
|
||||||
desc "Creates tables to store embeddings"
|
|
||||||
task "ai:embeddings:create_table" => [:environment] do
|
|
||||||
DiscourseAi::Database::Connection.db.exec(<<~SQL)
|
|
||||||
CREATE EXTENSION IF NOT EXISTS vector;
|
|
||||||
SQL
|
|
||||||
|
|
||||||
DiscourseAi::Embeddings::Model.enabled_models.each do |model|
|
|
||||||
DiscourseAi::Database::Connection.db.exec(<<~SQL)
|
|
||||||
CREATE TABLE IF NOT EXISTS topic_embeddings_#{model.name.underscore} (
|
|
||||||
topic_id bigint PRIMARY KEY,
|
|
||||||
embedding vector(#{model.dimensions})
|
|
||||||
);
|
|
||||||
SQL
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
desc "Backfill embeddings for all topics"
|
desc "Backfill embeddings for all topics"
|
||||||
task "ai:embeddings:backfill", [:start_topic] => [:environment] do |_, args|
|
task "ai:embeddings:backfill", [:start_topic] => [:environment] do |_, args|
|
||||||
public_categories = Category.where(read_restricted: false).pluck(:id)
|
public_categories = Category.where(read_restricted: false).pluck(:id)
|
||||||
topic_embeddings = DiscourseAi::Embeddings::Topic.new
|
manager = DiscourseAi::Embeddings::Manager.new(Topic.first)
|
||||||
Topic
|
Topic
|
||||||
.where("id >= ?", args[:start_topic] || 0)
|
.joins(
|
||||||
|
"LEFT JOIN #{manager.topic_embeddings_table} ON #{manager.topic_embeddings_table}.topic_id = topics.id",
|
||||||
|
)
|
||||||
|
.where("#{manager.topic_embeddings_table}.topic_id IS NULL")
|
||||||
|
.where("topics.id >= ?", args[:start_topic].to_i || 0)
|
||||||
.where("category_id IN (?)", public_categories)
|
.where("category_id IN (?)", public_categories)
|
||||||
.where(deleted_at: nil)
|
.where(deleted_at: nil)
|
||||||
.order(id: :asc)
|
.order("topics.id ASC")
|
||||||
.find_each do |t|
|
.find_each do |t|
|
||||||
print "."
|
print "."
|
||||||
topic_embeddings.generate_and_store_embeddings_for(t)
|
DiscourseAi::Embeddings::Manager.new(t).generate!
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -35,24 +23,30 @@ desc "Creates indexes for embeddings"
|
||||||
task "ai:embeddings:index", [:work_mem] => [:environment] do |_, args|
|
task "ai:embeddings:index", [:work_mem] => [:environment] do |_, args|
|
||||||
# Using extension maintainer's recommendation for ivfflat indexes
|
# Using extension maintainer's recommendation for ivfflat indexes
|
||||||
# Results are not as good as without indexes, but it's much faster
|
# Results are not as good as without indexes, but it's much faster
|
||||||
# Disk usage is ~1x the size of the table, so this double table total size
|
# Disk usage is ~1x the size of the table, so this doubles table total size
|
||||||
count = Topic.count
|
count = Topic.count
|
||||||
lists = count < 1_000_000 ? count / 1000 : Math.sqrt(count).to_i
|
lists = count < 1_000_000 ? count / 1000 : Math.sqrt(count).to_i
|
||||||
probes = count < 1_000_000 ? lists / 10 : Math.sqrt(lists).to_i
|
probes = count < 1_000_000 ? lists / 10 : Math.sqrt(lists).to_i
|
||||||
|
|
||||||
DiscourseAi::Database::Connection.db.exec("SET work_mem TO '#{args[:work_mem] || "1GB"}';")
|
manager = DiscourseAi::Embeddings::Manager.new(Topic.first)
|
||||||
DiscourseAi::Embeddings::Model.enabled_models.each do |model|
|
table = manager.topic_embeddings_table
|
||||||
DiscourseAi::Database::Connection.db.exec(<<~SQL)
|
index = "#{table}_search"
|
||||||
CREATE INDEX IF NOT EXISTS
|
|
||||||
topic_embeddings_#{model.name.underscore}_search
|
DB.exec("SET work_mem TO '#{args[:work_mem] || "1GB"}';")
|
||||||
ON
|
DB.exec(<<~SQL)
|
||||||
topic_embeddings_#{model.name.underscore}
|
DROP INDEX IF EXISTS #{index};
|
||||||
USING
|
CREATE INDEX IF NOT EXISTS
|
||||||
ivfflat (embedding #{model.pg_index})
|
#{index}
|
||||||
WITH
|
ON
|
||||||
(lists = #{lists});
|
#{table}
|
||||||
SQL
|
USING
|
||||||
end
|
ivfflat (embeddings #{manager.model.pg_index_type})
|
||||||
DiscourseAi::Database::Connection.db.exec("RESET work_mem;")
|
WITH
|
||||||
DiscourseAi::Database::Connection.db.exec("SET ivfflat.probes = #{probes};")
|
(lists = #{lists})
|
||||||
|
WHERE
|
||||||
|
model_version = #{manager.model.version} AND
|
||||||
|
strategy_version = #{manager.strategy.version};
|
||||||
|
SQL
|
||||||
|
DB.exec("RESET work_mem;")
|
||||||
|
DB.exec("SET ivfflat.probes = #{probes};")
|
||||||
end
|
end
|
||||||
|
|
Loading…
Reference in New Issue