FEATURE: Llama2 for summarization (#116)

This commit is contained in:
Rafael dos Santos Silva 2023-07-27 13:55:32 -03:00 committed by GitHub
parent 4b0c077ce5
commit b25daed60b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 93669 additions and 1 deletions

View File

@ -4,6 +4,7 @@ class AiApiAuditLog < ActiveRecord::Base
module Provider module Provider
OpenAI = 1 OpenAI = 1
Anthropic = 2 Anthropic = 2
HuggingFaceTextGeneration = 3
end end
end end

View File

@ -36,6 +36,7 @@ en:
ai_openai_embeddings_url: "Custom URL used for the OpenAI embeddings API. (in the case of Azure it can be: https://COMPANY.openai.azure.com/openai/deployments/DEPLOYMENT/embeddings?api-version=2023-05-15)" ai_openai_embeddings_url: "Custom URL used for the OpenAI embeddings API. (in the case of Azure it can be: https://COMPANY.openai.azure.com/openai/deployments/DEPLOYMENT/embeddings?api-version=2023-05-15)"
ai_openai_api_key: "API key for OpenAI API" ai_openai_api_key: "API key for OpenAI API"
ai_anthropic_api_key: "API key for Anthropic API" ai_anthropic_api_key: "API key for Anthropic API"
ai_hugging_face_api_url: "Custom URL used for OpenSource LLM inference. Compatible with https://github.com/huggingface/text-generation-inference"
composer_ai_helper_enabled: "Enable the Composer's AI helper." composer_ai_helper_enabled: "Enable the Composer's AI helper."
ai_helper_allowed_groups: "Users on these groups will see the AI helper button in the composer." ai_helper_allowed_groups: "Users on these groups will see the AI helper button in the composer."

View File

@ -108,6 +108,9 @@ plugins:
choices: choices:
- "stable-diffusion-xl-beta-v2-2-2" - "stable-diffusion-xl-beta-v2-2-2"
- "stable-diffusion-v1-5" - "stable-diffusion-v1-5"
ai_hugging_face_api_url:
default: ""
ai_google_custom_search_api_key: ai_google_custom_search_api_key:
default: "" default: ""

View File

@ -8,6 +8,7 @@ module DiscourseAi
require_relative "models/anthropic" require_relative "models/anthropic"
require_relative "models/discourse" require_relative "models/discourse"
require_relative "models/open_ai" require_relative "models/open_ai"
require_relative "models/llama2"
require_relative "strategies/fold_content" require_relative "strategies/fold_content"
require_relative "strategies/truncate_content" require_relative "strategies/truncate_content"
@ -21,6 +22,7 @@ module DiscourseAi
Models::OpenAi.new("gpt-3.5-turbo-16k", max_tokens: 16_384), Models::OpenAi.new("gpt-3.5-turbo-16k", max_tokens: 16_384),
Models::Discourse.new("long-t5-tglobal-base-16384-book-summary", max_tokens: 16_384), Models::Discourse.new("long-t5-tglobal-base-16384-book-summary", max_tokens: 16_384),
Models::Anthropic.new("claude-2", max_tokens: 100_000), Models::Anthropic.new("claude-2", max_tokens: 100_000),
Models::Llama2.new("Llama-2-7b-chat-hf", max_tokens: 4096),
] ]
foldable_models.each do |model| foldable_models.each do |model|

View File

@ -0,0 +1,104 @@
# frozen_string_literal: true
module DiscourseAi
module Summarization
module Models
class Llama2 < Base
def display_name
"Llama2's #{model}"
end
def correctly_configured?
SiteSetting.ai_hugging_face_api_url.present?
end
def configuration_hint
I18n.t(
"discourse_ai.summarization.configuration_hint",
count: 1,
setting: "ai_hugging_face_api_url",
)
end
def concatenate_summaries(summaries)
completion(<<~TEXT)
[INST] <<SYS>>
You are a helpful bot
<</SYS>>
Concatenate these disjoint summaries, creating a cohesive narrative:
#{summaries.join("\n")} [/INST]
TEXT
end
def summarize_with_truncation(contents, opts)
text_to_summarize = contents.map { |c| format_content_item(c) }.join
truncated_content = tokenizer.truncate(text_to_summarize, available_tokens)
completion(<<~TEXT)
[INST] <<SYS>>
#{build_base_prompt(opts)}
<</SYS>>
Summarize the following in up to 400 words:
#{truncated_content} [/INST]
TEXT
end
def summarize_single(chunk_text, opts)
summarize_chunk(chunk_text, opts.merge(single_chunk: true))
end
private
def summarize_chunk(chunk_text, opts)
summary_instruction =
if opts[:single_chunk]
"Summarize the following forum discussion, creating a cohesive narrative:"
else
"Summarize the following in up to 400 words:"
end
completion(<<~TEXT)
[INST] <<SYS>>
#{build_base_prompt(opts)}
<</SYS>>
#{summary_instruction}
#{chunk_text} [/INST]
TEXT
end
def build_base_prompt(opts)
base_prompt = <<~TEXT
You are a summarization bot.
You effectively summarise any text and reply ONLY with ONLY the summarized text.
You condense it into a shorter version.
You understand and generate Discourse forum Markdown.
TEXT
if opts[:resource_path]
base_prompt +=
"Try generating links as well the format is #{opts[:resource_path]}. eg: [ref](#{opts[:resource_path]}/77)\n"
end
base_prompt += "The discussion title is: #{opts[:content_title]}.\n" if opts[
:content_title
]
base_prompt
end
def completion(prompt)
::DiscourseAi::Inference::HuggingFaceTextGeneration.perform!(prompt, model).dig(
:generated_text,
)
end
def tokenizer
DiscourseAi::Tokenizer::Llama2Tokenizer
end
end
end
end
end

View File

@ -0,0 +1,137 @@
# frozen_string_literal: true
module ::DiscourseAi
module Inference
class HuggingFaceTextGeneration
CompletionFailed = Class.new(StandardError)
TIMEOUT = 60
def self.perform!(
prompt,
model,
temperature: 0.7,
top_p: nil,
top_k: nil,
typical_p: nil,
max_tokens: 2000,
repetition_penalty: 1.1,
user_id: nil
)
raise CompletionFailed if model.blank?
url = URI(SiteSetting.ai_hugging_face_api_url)
if block_given?
url.path = "/generate_stream"
else
url.path = "/generate"
end
headers = { "Content-Type" => "application/json" }
parameters = {}
payload = { inputs: prompt, parameters: parameters }
parameters[:top_p] = top_p if top_p
parameters[:top_k] = top_k if top_k
parameters[:typical_p] = typical_p if typical_p
parameters[:max_new_tokens] = max_tokens if max_tokens
parameters[:temperature] = temperature if temperature
parameters[:repetition_penalty] = repetition_penalty if repetition_penalty
Net::HTTP.start(
url.host,
url.port,
use_ssl: url.scheme == "https",
read_timeout: TIMEOUT,
open_timeout: TIMEOUT,
write_timeout: TIMEOUT,
) do |http|
request = Net::HTTP::Post.new(url, headers)
request_body = payload.to_json
request.body = request_body
http.request(request) do |response|
if response.code.to_i != 200
Rails.logger.error(
"HuggingFaceTextGeneration: status: #{response.code.to_i} - body: #{response.body}",
)
raise CompletionFailed
end
log =
AiApiAuditLog.create!(
provider_id: AiApiAuditLog::Provider::HuggingFaceTextGeneration,
raw_request_payload: request_body,
user_id: user_id,
)
if !block_given?
response_body = response.read_body
parsed_response = JSON.parse(response_body, symbolize_names: true)
log.update!(
raw_response_payload: response_body,
request_tokens: DiscourseAi::Tokenizer::Llama2Tokenizer.size(prompt),
response_tokens:
DiscourseAi::Tokenizer::Llama2Tokenizer.size(parsed_response[:generated_text]),
)
return parsed_response
end
begin
cancelled = false
cancel = lambda { cancelled = true }
response_data = +""
response_raw = +""
response.read_body do |chunk|
if cancelled
http.finish
return
end
response_raw << chunk
chunk
.split("\n")
.each do |line|
data = line.split("data: ", 2)[1]
next if !data || data.squish == "[DONE]"
if !cancelled
begin
# partial contains the entire payload till now
partial = JSON.parse(data, symbolize_names: true)
# this is the last chunk and contains the full response
next if partial[:token][:special] == true
response_data = partial[:token][:text].to_s
yield partial, cancel
rescue JSON::ParserError
nil
end
end
end
rescue IOError
raise if !cancelled
ensure
log.update!(
raw_response_payload: response_raw,
request_tokens: DiscourseAi::Tokenizer::Llama2Tokenizer.size(prompt),
response_tokens: DiscourseAi::Tokenizer::Llama2Tokenizer.size(response_data),
)
end
end
end
end
def self.try_parse(data)
JSON.parse(data, symbolize_names: true)
rescue JSON::ParserError
nil
end
end
end
end
end

View File

@ -52,6 +52,13 @@ module DiscourseAi
end end
end end
class Llama2Tokenizer < BasicTokenizer
def self.tokenizer
@@tokenizer ||=
Tokenizers.from_file("./plugins/discourse-ai/tokenizers/llama-2-70b-chat-hf.json")
end
end
class OpenAiTokenizer < BasicTokenizer class OpenAiTokenizer < BasicTokenizer
class << self class << self
def tokenizer def tokenizer

View File

@ -7,7 +7,7 @@
# url: https://meta.discourse.org/t/discourse-ai/259214 # url: https://meta.discourse.org/t/discourse-ai/259214
# required_version: 2.7.0 # required_version: 2.7.0
gem "tokenizers", "0.3.2" gem "tokenizers", "0.3.3"
gem "tiktoken_ruby", "0.0.5" gem "tiktoken_ruby", "0.0.5"
enabled_site_setting :discourse_ai_enabled enabled_site_setting :discourse_ai_enabled
@ -31,6 +31,7 @@ after_initialize do
require_relative "lib/shared/inference/openai_embeddings" require_relative "lib/shared/inference/openai_embeddings"
require_relative "lib/shared/inference/anthropic_completions" require_relative "lib/shared/inference/anthropic_completions"
require_relative "lib/shared/inference/stability_generator" require_relative "lib/shared/inference/stability_generator"
require_relative "lib/shared/inference/hugging_face_text_generation"
require_relative "lib/shared/classificator" require_relative "lib/shared/classificator"
require_relative "lib/shared/post_classificator" require_relative "lib/shared/post_classificator"

View File

@ -100,3 +100,20 @@ describe DiscourseAi::Tokenizer::AllMpnetBaseV2Tokenizer do
end end
end end
end end
describe DiscourseAi::Tokenizer::Llama2Tokenizer do
describe "#size" do
describe "returns a token count" do
it "for a sentence with punctuation and capitalization and numbers" do
expect(described_class.size("Hello, World! 123")).to eq(9)
end
end
end
describe "#truncate" do
it "truncates a sentence" do
sentence = "foo bar baz qux quux corge grault garply waldo fred plugh xyzzy thud"
expect(described_class.truncate(sentence, 3)).to eq("foo bar")
end
end
end

View File

@ -9,3 +9,7 @@ Licensed under MIT License
## all-mpnet-base-v2.json ## all-mpnet-base-v2.json
Licensed under Apache License Licensed under Apache License
## llama-2-70b-chat-hf
Licensed under LLAMA 2 COMMUNITY LICENSE AGREEMENT

File diff suppressed because it is too large Load Diff