The new automation rule can be used to perform llm based classification and categorization of topics.
You specify a system prompt (which has %%POST%% as an input), if it returns a particular piece of text then we will apply rules such as tagging, hiding, replying or categorizing.
This can be used as a spam filter, a "oops you are in the wrong place" filter and so on.
Co-authored-by: Joffrey JAFFEUX <j.jaffeux@gmail.com>
If a module LLM model is set to claude-2 and the ai_bedrock variables are all present we will use AWS Bedrock instead of Antrhopic own APIs.
This is quite hacky, but will allow us to test the waters with AWS Bedrock early access with every module.
This situation of "same module, completely different API" is quite a bit far from what we had in the OpenAI/Azure separation, so it's more food for thought for when we start working on the LLM abstraction layer soon this year.
* FEATURE: HyDE-powered semantic search.
It relies on the new outlet added on discourse/discourse#23390 to display semantic search results in an unobtrusive way.
We'll use a HyDE-backed approach for semantic search, which consists on generating an hypothetical document from a given keywords, which gets transformed into a vector and used in a asymmetric similarity topic search.
This PR also reorganizes the internals to have less moving parts, maintaining one hierarchy of DAOish classes for vector-related operations like transformations and querying.
Completions and vectors created by HyDE will remain cached on Redis for now, but we could later use Postgres instead.
* Missing translation and rate limiting
---------
Co-authored-by: Roman Rizzi <rizziromanalejandro@gmail.com>
Open AI support function calling, this has a very specific shape
that other LLMs have not quite adopted.
This simulates a command framework using system prompts on LLMs
that are not open AI.
Features include:
- Smart system prompt to steer the LLM
- Parameter validation (we ensure all the params are specified correctly)
This is being tested on Anthropic at the moment and intial results
are promising.
* FEATURE: Embeddings to main db
This commit moves our embeddings store from an external configurable PostgreSQL
instance back into the main database. This is done to simplify the setup.
There is a migration that will try to import the external embeddings into
the main DB if it is configured and there are rows.
It removes support from embeddings models that aren't all_mpnet_base_v2 or OpenAI
text_embedding_ada_002. However it will now be easier to add new models.
It also now takes into account:
- topic title
- topic category
- topic tags
- replies (as much as the model allows)
We introduce an interface so we can eventually support multiple strategies
for handling long topics.
This PR severely damages the semantic search performance, but this is a
temporary until we can get adapt HyDE to make semantic search use the same
embeddings we have for semantic related with good performance.
Here we also have some ground work to add post level embeddings, but this
will be added in a future PR.
Please note that this PR will also block Discourse from booting / updating if
this plugin is installed and the pgvector extension isn't available on the
PostgreSQL instance Discourse uses.
* DEV: Remove the summarization feature
Instead, we'll register summarization implementations for OpenAI, Anthropic, and Discourse AI using the API defined in discourse/discourse#21813.
Core and chat will implement features on top of these implementations instead of this plugin extending them.
* Register instances that contain the model, requiring less site settings
This module lets you chat with our GPT bot inside a PM. The bot only replies to members of the groups listed on the ai_bot_allowed_groups setting and only if you invite it to participate in the PM.
* FEATURE: Composer AI helper
This change introduces a new composer button for the group members listed in the `ai_helper_allowed_groups` site setting.
Users can use chatGPT to review, improve, or translate their posts to English.
* Add a safeguard for PMs and don't rely on parentView
This change adds two new reviewable types: ReviewableAIPost and ReviewableAIChatMessage. They have the same actions as their existing counterparts: ReviewableFlaggedPost and ReviewableChatMessage.
We'll display the model used and their accuracy when showing these flags in the review queue and adjust the latter after staff performs an action, tracking a global accuracy per existing model in a separate table.
* FEATURE: Dedicated reviewables for AI flags
* Store and adjust model accuracy
* Display accuracy in reviewable templates