Adds a comprehensive quota management system for LLM models that allows:
- Setting per-group (applied per user in the group) token and usage limits with configurable durations
- Tracking and enforcing token/usage limits across user groups
- Quota reset periods (hourly, daily, weekly, or custom)
- Admin UI for managing quotas with real-time updates
This system provides granular control over LLM API usage by allowing admins
to define limits on both total tokens and number of requests per group.
Supports multiple concurrent quotas per model and automatically handles
quota resets.
Co-authored-by: Keegan George <kgeorge13@gmail.com>
This update adds some structure for handling errors in the spam config while also handling a specific error related to the spam scanning user not being an admin account.
This introduces a comprehensive spam detection system that uses LLM models
to automatically identify and flag potential spam posts. The system is
designed to be both powerful and configurable while preventing false positives.
Key Features:
* Automatically scans first 3 posts from new users (TL0/TL1)
* Creates dedicated AI flagging user to distinguish from system flags
* Tracks false positives/negatives for quality monitoring
* Supports custom instructions to fine-tune detection
* Includes test interface for trying detection on any post
Technical Implementation:
* New database tables:
- ai_spam_logs: Stores scan history and results
- ai_moderation_settings: Stores LLM config and custom instructions
* Rate limiting and safeguards:
- Minimum 10-minute delay between rescans
- Only scans significant edits (>10 char difference)
- Maximum 3 scans per post
- 24-hour maximum age for scannable posts
* Admin UI features:
- Real-time testing capabilities
- 7-day statistics dashboard
- Configurable LLM model selection
- Custom instruction support
Security and Performance:
* Respects trust levels - only scans TL0/TL1 users
* Skips private messages entirely
* Stops scanning users after 3 successful public posts
* Includes comprehensive test coverage
* Maintains audit log of all scan attempts
---------
Co-authored-by: Keegan George <kgeorge13@gmail.com>
Co-authored-by: Martin Brennan <martin@discourse.org>
* UX: Improve rough edges of AI usage page
* Ensure all text uses I18n
* Change from <button> usage to <DButton>
* Use <AdminConfigAreaCard> in place of custom card styles
* Format numbers nicely using our number format helper,
show full values on hover using title attr
* Ensure 0 is always shown for counters, instead of being blank
* FEATURE: Load usage data after page load
Use ConditionalLoadingSpinner to hide load of usage
data, this prevents us hanging on page load with a white
screen.
* UX: Split users table, and add empty placeholders and page subheader
* DEV: Test fix
- Added a new admin interface to track AI usage metrics, including tokens, features, and models.
- Introduced a new route `/admin/plugins/discourse-ai/ai-usage` and supporting API endpoint in `AiUsageController`.
- Implemented `AiUsageSerializer` for structuring AI usage data.
- Integrated CSS stylings for charts and tables under `stylesheets/modules/llms/common/usage.scss`.
- Enhanced backend with `AiApiAuditLog` model changes: added `cached_tokens` column (implemented with OpenAI for now) with relevant DB migration and indexing.
- Created `Report` module for efficient aggregation and filtering of AI usage metrics.
- Updated AI Bot title generation logic to log correctly to user vs bot
- Extended test coverage for the new tracking features, ensuring data consistency and access controls.
This commit applies further admin UI guidelines, now that they have been more
fleshed out in core, to the AI admin UI:
* Tools
* LLMs
* Personas
The changes include but are not limited to:
* Applying the table CSS classes, for desktop and mobile
* Adding a description and learn more link for each tab
* Adding an empty list placeholder with CTA using `AdminConfigAreaEmptyList`
* Replacing custom headings with `AdminPageSubheader`
This changeset:
1. Corrects some issues with "force_default_llm" not applying
2. Expands the LLM list page to show LLM usage
3. Clarifies better what "enabling a bot" on an llm means (you get it in the selector)
Restructures LLM config page so it is far clearer.
Also corrects bugs around adding LLMs and having LLMs not editable post addition
---------
Co-authored-by: Sam Saffron <sam.saffron@gmail.com>
* FEATURE: LLM Triage support for systemless models.
This change adds support for OSS models without support for system messages. LlmTriage's system message field is no longer mandatory. We now send the post contents in a separate user message.
* Models using Ollama can also disable system prompts
* FEATURE: Set endpoint credentials directly from LlmModel.
Drop Llama2Tokenizer since we no longer use it.
* Allow http for custom LLMs
---------
Co-authored-by: Rafael Silva <xfalcox@gmail.com>
This PR introduces the concept of "LlmModel" as a new way to quickly add new LLM models without making any code changes. We are releasing this first version and will add incremental improvements, so expect changes.
The AI Bot can't fully take advantage of this feature as users are hard-coded. We'll fix this in a separate PR.s