* REFACTOR: A Simpler way of interacting with embeddings' tables.
This change adds a new abstraction called `Schema`, which acts as a repository that supports the same DB features `VectorRepresentation::Base` has, with the exception that removes the need to have duplicated methods per embeddings table.
It is also a bit more flexible when performing a similarity search because you can pass it a block that gives you access to the builder, allowing you to add multiple joins/where conditions.
* FEATURE: Fast-track gist regeneration when a hot topic gets a new post
* DEV: Introduce an upsert-like summarize
* FIX: Only enqueue fast-track gist for hot hot hot topics
---------
Co-authored-by: Rafael Silva <xfalcox@gmail.com>
* Display gists in the hot topics list
* Adjust hot topics gist strategy and add a job to generate gists
* Replace setting with a configurable batch size
* Avoid loading summaries for other topic lists
* Tweak gist prompt to focus on latest posts in the context of the OP
* Remove serializer hack and rely on core change from discourse/discourse#29291
* Update lib/summarization/strategies/hot_topic_gists.rb
Co-authored-by: Rafael dos Santos Silva <xfalcox@gmail.com>
---------
Co-authored-by: Rafael dos Santos Silva <xfalcox@gmail.com>
This allows custom tools access to uploads and sophisticated searches using embedding.
It introduces:
- A shared front end for listing and uploading files (shared with personas)
- Backend implementation of index.search function within a custom tool.
Custom tools now may search through uploaded files
function invoke(params) {
return index.search(params.query)
}
This means that RAG implementers now may preload tools with knowledge and have high fidelity over
the search.
The search function support
specifying max results
specifying a subset of files to search (from uploads)
Also
- Improved documentation for tools (when creating a tool a preamble explains all the functionality)
- uploads were a bit finicky, fixed an edge case where the UI would not show them as updated
Polymorphic RAG means that we will be able to access RAG fragments both from AiPersona and AiCustomTool
In turn this gives us support for richer RAG implementations.
This allows summary to use the new LLM models and migrates of API key based model selection
Claude 3.5 etc... all work now.
---------
Co-authored-by: Roman Rizzi <rizziromanalejandro@gmail.com>
We no longer support the "provider:model" format in the "ai_helper_model" and
"ai_embeddings_semantic_search_hyde_model" settings. We'll migrate existing
values and work with our new data-driven LLM configs from now on.
* FEATURE: allow tuning of RAG generation
- change chunking to be token based vs char based (which is more accurate)
- allow control over overlap / tokens per chunk and conversation snippets inserted
- UI to control new settings
* improve ui a bit
* fix various reindex issues
* reduce concurrency
* try ultra low queue ... concurrency 1 is too slow.
* FEATURE: Add metadata support for RAG
You may include non indexed metadata in the RAG document by using
[[metadata ....]]
This information is attached to all the text below and provided to
the retriever.
This allows for RAG to operate within a rich amount of contexts
without getting lost
Also:
- re-implemented chunking algorithm so it streams
- moved indexing to background low priority queue
* Baran gem no longer required.
* tokenizers is on 4.4 ... upgrade it ...
This PR lets you associate uploads to an AI persona, which we'll split and generate embeddings from. When building the system prompt to get a bot reply, we'll do a similarity search followed by a re-ranking (if available). This will let us find the most relevant fragments from the body of knowledge you associated with the persona, resulting in better, more informed responses.
For now, we'll only allow plain-text files, but this will change in the future.
Commits:
* FEATURE: RAG embeddings for the AI Bot
This first commit introduces a UI where admins can upload text files, which we'll store, split into fragments,
and generate embeddings of. In a next commit, we'll use those to give the bot additional information during
conversations.
* Basic asymmetric similarity search to provide guidance in system prompt
* Fix tests and lint
* Apply reranker to fragments
* Uploads filter, css adjustments and file validations
* Add placeholder for rag fragments
* Update annotations
* UX: Validations to Llm-backed features (except AI Bot)
This change is part of an ongoing effort to prevent enabling a broken feature due to lack of configuration. We also want to explicit which provider we are going to use. For example, Claude models are available through AWS Bedrock and Anthropic, but the configuration differs.
Validations are:
* You must choose a model before enabling the feature.
* You must turn off the feature before setting the model to blank.
* You must configure each model settings before being able to select it.
* Add provider name to summarization options
* vLLM can technically support same models as HF
* Check we can talk to the selected model
* Check for Bedrock instead of anthropic as a site could have both creds setup