Splits persona permissions so you can allow a persona on:
- chat dms
- personal messages
- topic mentions
- chat channels
(any combination is allowed)
Previously we did not have this flexibility.
Additionally, adds the ability to "tether" a language model to a persona so it will always be used by the persona. This allows people to use a cheaper language model for one group of people and more expensive one for other people
This introduces another configuration that allows operators to
limit the amount of interactions with forced tool usage.
Forced tools are very handy in initial llm interactions, but as
conversation progresses they can hinder by slowing down stuff
and adding confusion.
* FEATURE: allows forced LLM tool use
Sometimes we need to force LLMs to use tools, for example in RAG
like use cases we may want to force an unconditional search.
The new framework allows you backend to force tool usage.
Front end commit to follow
* UI for forcing tools now works, but it does not react right
* fix bugs
* fix tests, this is now ready for review
This PR updates the rate limits for AI helper so that image caption follows a specific rate limit of 20 requests per minute. This should help when uploading multiple files that need to be captioned. This PR also updates the UI so that it shows toast message with the extracted error message instead of having a blocking `popupAjaxError` error dialog.
---------
Co-authored-by: Rafael dos Santos Silva <xfalcox@gmail.com>
Co-authored-by: Penar Musaraj <pmusaraj@gmail.com>
This allows custom tools access to uploads and sophisticated searches using embedding.
It introduces:
- A shared front end for listing and uploading files (shared with personas)
- Backend implementation of index.search function within a custom tool.
Custom tools now may search through uploaded files
function invoke(params) {
return index.search(params.query)
}
This means that RAG implementers now may preload tools with knowledge and have high fidelity over
the search.
The search function support
specifying max results
specifying a subset of files to search (from uploads)
Also
- Improved documentation for tools (when creating a tool a preamble explains all the functionality)
- uploads were a bit finicky, fixed an edge case where the UI would not show them as updated
Restructures LLM config page so it is far clearer.
Also corrects bugs around adding LLMs and having LLMs not editable post addition
---------
Co-authored-by: Sam Saffron <sam.saffron@gmail.com>
Polymorphic RAG means that we will be able to access RAG fragments both from AiPersona and AiCustomTool
In turn this gives us support for richer RAG implementations.
Embedding search is rate limited due to potentially expensive
hyde operation (which require LLM access).
Embedding generally is very cheap compared to it. (usually 100x cheaper)
This raises the limit to 100 per minute for embedding searches,
while keeping the old 4 per minute for HyDE powered search.
This allows callers of embedding based search to bypass hyde.
Hyde will expand the search term using an LLM, but if an LLM is
performing the search we can skip this expansion.
It also introduced some tests for the controller which we did not have
* FEATURE: LLM Triage support for systemless models.
This change adds support for OSS models without support for system messages. LlmTriage's system message field is no longer mandatory. We now send the post contents in a separate user message.
* Models using Ollama can also disable system prompts
When navigating between topic we were not correctly resetting
internal state for summarization. This leads to a situation where
incorrect summaries can be displayed to users and wrong summaries
can be displayed.
Additionally our controller for grabbing summaries was always
streaming results via message bus, which could be delayed when
sidekiq is overloaded. We now will return the cached summary
right away if it is available direct from REST endpoint.
Creating a new model, either manually or from presets, doesn't initialize the `provider_params` object, meaning their custom params won't persist.
Additionally, this change adds some validations for Bedrock params, which are mandatory, and a clear message when a completion fails because we cannot build the URL.
- Validate fields to reduce the chance of breaking features by a misconfigured model.
- Fixed a bug where the URL might get deleted during an update.
- Display a warning when a model is currently in use.
This allows summary to use the new LLM models and migrates of API key based model selection
Claude 3.5 etc... all work now.
---------
Co-authored-by: Roman Rizzi <rizziromanalejandro@gmail.com>
* FIX: Use base64 encoded images in AI Image Caption via LLaVa
This fixed a regression introduced in #646 where we started sending
schemaless URLs for our LLaVa service, which doesn't handle it well.
Moving to base64 encoded images solves:
- The service needing to download images
Now the service running LLaVa doesn't need internet access
- Secure uploads compat
Every image is treated the same, less branching for secure uploads
- Image Size problems
Discourse is now responsible for ensure a max size for images
- Troublesome dev env
Previously to this commit you would need a dev env that was internet
acessible to use llava image captions
Introduces custom AI tools functionality.
1. Why it was added:
The PR adds the ability to create, manage, and use custom AI tools within the Discourse AI system. This feature allows for more flexibility and extensibility in the AI capabilities of the platform.
2. What it does:
- Introduces a new `AiTool` model for storing custom AI tools
- Adds CRUD (Create, Read, Update, Delete) operations for AI tools
- Implements a tool runner system for executing custom tool scripts
- Integrates custom tools with existing AI personas
- Provides a user interface for managing custom tools in the admin panel
3. Possible use cases:
- Creating custom tools for specific tasks or integrations (stock quotes, currency conversion etc...)
- Allowing administrators to add new functionalities to AI assistants without modifying core code
- Implementing domain-specific tools for particular communities or industries
4. Code structure:
The PR introduces several new files and modifies existing ones:
a. Models:
- `app/models/ai_tool.rb`: Defines the AiTool model
- `app/serializers/ai_custom_tool_serializer.rb`: Serializer for AI tools
b. Controllers:
- `app/controllers/discourse_ai/admin/ai_tools_controller.rb`: Handles CRUD operations for AI tools
c. Views and Components:
- New Ember.js components for tool management in the admin interface
- Updates to existing AI persona management components to support custom tools
d. Core functionality:
- `lib/ai_bot/tool_runner.rb`: Implements the custom tool execution system
- `lib/ai_bot/tools/custom.rb`: Defines the custom tool class
e. Routes and configurations:
- Updates to route configurations to include new AI tool management pages
f. Migrations:
- `db/migrate/20240618080148_create_ai_tools.rb`: Creates the ai_tools table
g. Tests:
- New test files for AI tool functionality and integration
The PR integrates the custom tools system with the existing AI persona framework, allowing personas to use both built-in and custom tools. It also includes safety measures such as timeouts and HTTP request limits to prevent misuse of custom tools.
Overall, this PR significantly enhances the flexibility and extensibility of the Discourse AI system by allowing administrators to create and manage custom AI tools tailored to their specific needs.
Co-authored-by: Martin Brennan <martin@discourse.org>
Having this as a callback prevents deploys of sites with a vLLM SRV configured and pending migrations. Additionally, this fixes a bug where we didn't delete/deactivate the companion user after deleting an LLM.
Previously, we stored request parameters like the OpenAI organization and Bedrock's access key and region as site settings. This change stores them in the `llm_models` table instead, letting us drop more settings while also becoming more flexible.
We no longer support the "provider:model" format in the "ai_helper_model" and
"ai_embeddings_semantic_search_hyde_model" settings. We'll migrate existing
values and work with our new data-driven LLM configs from now on.
* DRAFT: Create AI Bot users dynamically and support custom LlmModels
* Get user associated to llm_model
* Track enabled bots with attribute
* Don't store bot username. Minor touches to migrate default values in settings
* Handle scenario where vLLM uses a SRV record
* Made 3.5-turbo-16k the default version so we can remove hack
This is a rather huge refactor with 1 new feature (tool details can
be suppressed)
Previously we use the name "Command" to describe "Tools", this unifies
all the internal language and simplifies the code.
We also amended the persona UI to use less DToggles which aligns
with our design guidelines.
Co-authored-by: Martin Brennan <martin@discourse.org>
Initial implementation allowed internet wide sharing of
AI conversations, on sites that require login.
This feature can be an anti feature for private sites cause they
can not share conversations internally.
For now we are removing support for public sharing on login required
sites, if the community need the feature we can consider adding a
setting.
Previoulsy on GPT-4-vision was supported, change introduces support
for Google/Anthropic and new OpenAI models
Additionally this makes vision work properly in dev environments
cause we sent the encoded payload via prompt vs sending urls
This change allows us to delete custom models. It checks if there is no module using them.
It also fixes a bug where the after-create transition wasn't working. While this prevents a model from being saved multiple times, endpoint validations are still needed (will be added in a separate PR).:
This PR introduces the concept of "LlmModel" as a new way to quickly add new LLM models without making any code changes. We are releasing this first version and will add incremental improvements, so expect changes.
The AI Bot can't fully take advantage of this feature as users are hard-coded. We'll fix this in a separate PR.s
This optional feature allows search to be performed in the context
of the user that executed it.
By default we do not allow this behavior cause it means llm gets
access to potentially secure data.
* FIX: various RAG edge cases
- Nicer text to describe RAG, avoids the word RAG
- Do not attempt to save persona when removing uploads and it is not created
- Remove old code that avoided touching rag params on create
* FIX: Missing pause button for persona users
* Feature: allow specific users to debug ai request / response chains
This can help users easily tune RAG and figure out what is going
on with requests.
* discourse helper so it does not explode
* fix test
* simplify implementation
* FEATURE: allow tuning of RAG generation
- change chunking to be token based vs char based (which is more accurate)
- allow control over overlap / tokens per chunk and conversation snippets inserted
- UI to control new settings
* improve ui a bit
* fix various reindex issues
* reduce concurrency
* try ultra low queue ... concurrency 1 is too slow.
This commit uses a new plugin modifier introduced in https://github.com/discourse/discourse/pull/26508
to mark all uploads as _not_ secure in shared PM AI conversations.
This is so images created by the AI bot (or uploaded by the user)
do not end up as broken URLs because of the security requirements
around them.
This relies on the UpdateTopicUploadSecurity job in core as well,
which is fired when an AI conversation is shared or deleted.
This PR lets you associate uploads to an AI persona, which we'll split and generate embeddings from. When building the system prompt to get a bot reply, we'll do a similarity search followed by a re-ranking (if available). This will let us find the most relevant fragments from the body of knowledge you associated with the persona, resulting in better, more informed responses.
For now, we'll only allow plain-text files, but this will change in the future.
Commits:
* FEATURE: RAG embeddings for the AI Bot
This first commit introduces a UI where admins can upload text files, which we'll store, split into fragments,
and generate embeddings of. In a next commit, we'll use those to give the bot additional information during
conversations.
* Basic asymmetric similarity search to provide guidance in system prompt
* Fix tests and lint
* Apply reranker to fragments
* Uploads filter, css adjustments and file validations
* Add placeholder for rag fragments
* Update annotations
This commit adds the ability to enable vision for AI personas, allowing them to understand images that are posted in the conversation.
For personas with vision enabled, any images the user has posted will be resized to be within the configured max_pixels limit, base64 encoded and included in the prompt sent to the AI provider.
The persona editor allows enabling/disabling vision and has a dropdown to select the max supported image size (low, medium, high). Vision is disabled by default.
This initial vision support has been tested and implemented with Anthropic's claude-3 models which accept images in a special format as part of the prompt.
Other integrations will need to be updated to support images.
Several specs were added to test the new functionality at the persona, prompt building and API layers.
- Gemini is omitted, pending API support for Gemini 1.5. Current Gemini bot is not performing well, adding images is unlikely to make it perform any better.
- Open AI is omitted, vision support on GPT-4 it limited in that the API has no tool support when images are enabled so we would need to full back to a different prompting technique, something that would add lots of complexity
---------
Co-authored-by: Martin Brennan <martin@discourse.org>
This allows users to share a static page of an AI conversation with
the rest of the world.
By default this feature is disabled, it is enabled by turning on
ai_bot_allow_public_sharing via site settings
Precautions are taken when sharing
1. We make a carbonite copy
2. We minimize work generating page
3. We limit to 100 interactions
4. Many security checks - including disallowing if there is a mix
of users in the PM.
* Bonus commit, large PRs like this PR did not work with github tool
large objects would destroy context
Co-authored-by: Martin Brennan <martin@discourse.org>
Utilizes the check for secure upload permissions from core PR
https://github.com/discourse/discourse/pull/25758 and cleans up
controller codes and spec code to reuse existing code and better
reflect reality.
This PR adds a new feature where you can generate captions for images in the composer using AI.
---------
Co-authored-by: Rafael Silva <xfalcox@gmail.com>