This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments.
Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer.
EG:
- User: how many cars are there in europe
- Model: detailed answer about cars in europe including the term car and vehicle many times
- User: Nice, what about trains are there in the US
In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal.
Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content.
The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui.
This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation.
Key changes:
1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation.
2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt.
3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question.
4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration.
5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality.
This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
This allows you to exclude trees of categories in a simple way
It also means you can no longer exclude "just the parent" but
this is a fair compromise.
For quite a few weeks now, some times, when running function calls
on Anthropic we would get a "stray" - "calls" line.
This has been enormously frustrating!
I have been unable to find the source of the bug so instead decoupled
the implementation and create a very clear "function call normalizer"
This new class is extensively tested and guards against the type of
edge cases we saw pre-normalizer.
This also simplifies the implementation of "endpoint" which no longer
needs to handle all this complex logic.
* FIX: various RAG edge cases
- Nicer text to describe RAG, avoids the word RAG
- Do not attempt to save persona when removing uploads and it is not created
- Remove old code that avoided touching rag params on create
* FIX: Missing pause button for persona users
* Feature: allow specific users to debug ai request / response chains
This can help users easily tune RAG and figure out what is going
on with requests.
* discourse helper so it does not explode
* fix test
* simplify implementation
* FEATURE: allow tuning of RAG generation
- change chunking to be token based vs char based (which is more accurate)
- allow control over overlap / tokens per chunk and conversation snippets inserted
- UI to control new settings
* improve ui a bit
* fix various reindex issues
* reduce concurrency
* try ultra low queue ... concurrency 1 is too slow.
Just having the word JSON can confuse models when we expect them
to deal solely in XML
Instead provide an example of how string arrays should be returned
Technically the tool framework supports int arrays and more, but
our current implementation only does string arrays.
Also tune the prompt construction not to give any tips about arrays
if none exist
- Added Cohere Command models (Command, Command Light, Command R, Command R Plus) to the available model list
- Added a new site setting `ai_cohere_api_key` for configuring the Cohere API key
- Implemented a new `DiscourseAi::Completions::Endpoints::Cohere` class to handle interactions with the Cohere API, including:
- Translating request parameters to the Cohere API format
- Parsing Cohere API responses
- Supporting streaming and non-streaming completions
- Supporting "tools" which allow the model to call back to discourse to lookup additional information
- Implemented a new `DiscourseAi::Completions::Dialects::Command` class to translate between the generic Discourse AI prompt format and the Cohere Command format
- Added specs covering the new Cohere endpoint and dialect classes
- Updated `DiscourseAi::AiBot::Bot.guess_model` to map the new Cohere model to the appropriate bot user
In summary, this PR adds support for using the Cohere Command family of models with the Discourse AI plugin. It handles configuring API keys, making requests to the Cohere API, and translating between Discourse's generic prompt format and Cohere's specific format. Thorough test coverage was added for the new functionality.
It used to fetch it from /site.json, but /categories.json is the more
appropriate one. This one also implements pagination, so we have to do
one request per page.
it is close in performance to GPT 4 at a fraction of the cost,
nice to add it to the mix.
Also improves a test case to simulate streaming, I am hunting for
the "calls" word that is jumping into function calls and can't quite
find it.
This PR lets you associate uploads to an AI persona, which we'll split and generate embeddings from. When building the system prompt to get a bot reply, we'll do a similarity search followed by a re-ranking (if available). This will let us find the most relevant fragments from the body of knowledge you associated with the persona, resulting in better, more informed responses.
For now, we'll only allow plain-text files, but this will change in the future.
Commits:
* FEATURE: RAG embeddings for the AI Bot
This first commit introduces a UI where admins can upload text files, which we'll store, split into fragments,
and generate embeddings of. In a next commit, we'll use those to give the bot additional information during
conversations.
* Basic asymmetric similarity search to provide guidance in system prompt
* Fix tests and lint
* Apply reranker to fragments
* Uploads filter, css adjustments and file validations
* Add placeholder for rag fragments
* Update annotations
This pull request makes several improvements and additions to the GitHub-related tools and personas in the `discourse-ai` repository:
1. It adds the `WebBrowser` tool to the `Researcher` persona, allowing the AI to visit web pages, retrieve HTML content, extract the main content, and convert it to plain text.
2. It updates the `GithubFileContent`, `GithubPullRequestDiff`, and `GithubSearchCode` tools to handle HTTP responses more robustly (introducing size limits).
3. It refactors the `send_http_request` method in the `Tool` class to follow redirects when specified, and to read the response body in chunks to avoid memory issues with large responses. (only for WebBrowser)
4. It updates the system prompt for the `Researcher` persona to provide more detailed guidance on when to use Google search vs web browsing, and how to optimize tool usage and reduce redundant requests.
5. It adds a new `web_browser_spec.rb` file with tests for the `WebBrowser` tool, covering various scenarios like handling different HTML structures and following redirects.
This commit adds the ability to enable vision for AI personas, allowing them to understand images that are posted in the conversation.
For personas with vision enabled, any images the user has posted will be resized to be within the configured max_pixels limit, base64 encoded and included in the prompt sent to the AI provider.
The persona editor allows enabling/disabling vision and has a dropdown to select the max supported image size (low, medium, high). Vision is disabled by default.
This initial vision support has been tested and implemented with Anthropic's claude-3 models which accept images in a special format as part of the prompt.
Other integrations will need to be updated to support images.
Several specs were added to test the new functionality at the persona, prompt building and API layers.
- Gemini is omitted, pending API support for Gemini 1.5. Current Gemini bot is not performing well, adding images is unlikely to make it perform any better.
- Open AI is omitted, vision support on GPT-4 it limited in that the API has no tool support when images are enabled so we would need to full back to a different prompting technique, something that would add lots of complexity
---------
Co-authored-by: Martin Brennan <martin@discourse.org>
We were only suppressing non mentions, ones that become spans.
@sam in the test was not resolving to a mention cause the user
did not exist.
depends on: https://github.com/discourse/discourse/pull/26253 for tests to pass.
- Stop replying as bot, when human replies to another human
- Reply as correct persona when replying directly to a persona
- Fix paper cut where suppressing notifications was not doing so
This PR consolidates the implements new Anthropic Messages interface for Bedrock Claude endpoints and adds support for the new Claude 3 models (haiku, opus, sonnet).
Key changes:
- Renamed `AnthropicMessages` and `Anthropic` endpoint classes into a single `Anthropic` class (ditto for ClaudeMessages -> Claude)
- Updated `AwsBedrock` endpoints to use the new `/messages` API format for all Claude models
- Added `claude-3-haiku`, `claude-3-opus` and `claude-3-sonnet` model support in both Anthropic and AWS Bedrock endpoints
- Updated specs for the new consolidated endpoints and Claude 3 model support
This refactor removes support for old non messages API which has been deprecated by anthropic
* FEATURE: allow suppression of notifications from report generation
Previously we needed to do this by hand, unfortunately this uses up
too many tokens and is very hard to discover.
New option means that we can trivially disable notifications without
needing any prompt engineering.
* URI.parse is safer, use it
This allows users to share a static page of an AI conversation with
the rest of the world.
By default this feature is disabled, it is enabled by turning on
ai_bot_allow_public_sharing via site settings
Precautions are taken when sharing
1. We make a carbonite copy
2. We minimize work generating page
3. We limit to 100 interactions
4. Many security checks - including disallowing if there is a mix
of users in the PM.
* Bonus commit, large PRs like this PR did not work with github tool
large objects would destroy context
Co-authored-by: Martin Brennan <martin@discourse.org>
Adds support for "name" on functions which can be used for tool calls
For function calls we need to keep track of id/name and previously
we only supported either
Also attempts to improve sql helper
Introduces a new AI Bot persona called 'GitHub Helper' which is specialized in assisting with GitHub-related tasks and questions. It includes the following key changes:
- Implements the GitHub Helper persona class with its system prompt and available tools
- Adds three new AI Bot tools for GitHub interactions:
- github_file_content: Retrieves content of files from a GitHub repository
- github_pull_request_diff: Retrieves the diff for a GitHub pull request
- github_search_code: Searches for code in a GitHub repository
- Updates the AI Bot dialects to support the new GitHub tools
- Implements multiple function calls for standard tool dialect
This provides new support for messages API from Claude.
It is required for latest model access.
Also corrects implementation of function calls.
* Fix message interleving
* fix broken spec
* add new models to automation
- FIX: only update system attributes when updating system persona
- FIX: update participant count by hand so bot messages show in inbox
Co-authored-by: Joffrey JAFFEUX <j.jaffeux@gmail.com>
* FIX: support multiple tool calls
Prior to this change we had a hard limit of 1 tool call per llm
round trip. This meant you could not google multiple things at
once or perform searches across two tools.
Also:
- Hint when Google stops working
- Log topic_id / post_id when performing completions
* Also track id for title
Previous to this fix if a tool call ever streamed a SPACE alone,
we would eat it and ignore it, breaking params
Also fixes some tests to ensure they are actually called :)
* DEV: improve internal design of ai persona and bug fix
- Fixes bug where OpenAI could not describe images
- Fixes bug where mentionable personas could not be mentioned unless overarching bot was enabled
- Improves internal design of playground and bot to allow better for non "bot" users
- Allow PMs directly to persona users (previously bot user would also have to be in PM)
- Simplify internal code
Co-authored-by: Martin Brennan <martin@discourse.org>
* FEATURE: AI helper support in non English languages
This attempts some prompt engineering to coerce AI helper to answer
in the appropriate language.
Note mileage will vary, in testing GPT-4 produces the best results
GPT-3.5 can return OKish results.
* Extend non english support for GPT-4V image caption
* Update db/fixtures/ai_helper/603_completion_prompts.rb
---------
Co-authored-by: Rafael Silva <xfalcox@gmail.com>
The Faraday adapter and `FinalDestionation::HTTP` will protect us from admin-initiated SSRF attacks when interacting with the external services powering this plugin features.:
This persona searches Discourse Meta for help with Discourse and
points users at relevant posts.
It is somewhat similar to using "Forum Helper" on meta, with the
notable difference that we can not lean on semantic search so using
some prompt engineering we try to keep it simple.
1. Personas are now optionally mentionable, meaning that you can mention them either from public topics or PMs
- Mentioning from PMs helps "switch" persona mid conversation, meaning if you want to look up sites setting you can invoke the site setting bot, or if you want to generate an image you can invoke dall e
- Mentioning outside of PMs allows you to inject a bot reply in a topic trivially
- We also add the support for max_context_posts this allow you to limit the amount of context you feed in, which can help control costs
2. Add support for a "random picker" tool that can be used to pick random numbers
3. Clean up routing ai_personas -> ai-personas
4. Add Max Context Posts so users can control how much history a persona can consume (this is important for mentionable personas)
Co-authored-by: Martin Brennan <martin@discourse.org>
* FIX: Better AI chat thread titles
- Fix quote removal when multi-line
- Use XML tags for better LLM output parsing
- Use stop_sequences for faster and less wasteful LLM calls
- Adds truncation as the last line of defense
* FEATURE: allow personas to supply top_p and temperature params
Code assistance generally are more focused at a lower temperature
This amends it so SQL Helper runs at 0.2 temperature vs the more
common default across LLMs of 1.0.
Reduced temperature leads to more focused, concise and predictable
answers for the SQL Helper
* fix tests
* This is not perfect, but far better than what we do today
Instead of fishing for
1. Draft sequence
2. Draft body
We skip (2), this means the composer "only" needs 1 http request to
open, we also want to eliminate (1) but it is a bit of a trickier
core change, may figure out how to pull it off (defer it to first draft save)
Value of bot drafts < value of opening bot conversations really fast