This is a significant PR that introduces AI Artifacts functionality to the discourse-ai plugin along with several other improvements. Here are the key changes:
1. AI Artifacts System:
- Adds a new `AiArtifact` model and database migration
- Allows creation of web artifacts with HTML, CSS, and JavaScript content
- Introduces security settings (`strict`, `lax`, `disabled`) for controlling artifact execution
- Implements artifact rendering in iframes with sandbox protection
- New `CreateArtifact` tool for AI to generate interactive content
2. Tool System Improvements:
- Adds support for partial tool calls, allowing incremental updates during generation
- Better handling of tool call states and progress tracking
- Improved XML tool processing with CDATA support
- Fixes for tool parameter handling and duplicate invocations
3. LLM Provider Updates:
- Updates for Anthropic Claude models with correct token limits
- Adds support for native/XML tool modes in Gemini integration
- Adds new model configurations including Llama 3.1 models
- Improvements to streaming response handling
4. UI Enhancements:
- New artifact viewer component with expand/collapse functionality
- Security controls for artifact execution (click-to-run in strict mode)
- Improved dialog and response handling
- Better error management for tool execution
5. Security Improvements:
- Sandbox controls for artifact execution
- Public/private artifact sharing controls
- Security settings to control artifact behavior
- CSP and frame-options handling for artifacts
6. Technical Improvements:
- Better post streaming implementation
- Improved error handling in completions
- Better memory management for partial tool calls
- Enhanced testing coverage
7. Configuration:
- New site settings for artifact security
- Extended LLM model configurations
- Additional tool configuration options
This PR significantly enhances the plugin's capabilities for generating and displaying interactive content while maintaining security and providing flexible configuration options for administrators.
This change introduces a job to summarize topics and cache the results automatically. We provide a setting to control how many topics we'll backfill per hour and what the topic's minimum word count is to qualify.
We'll prioritize topics without summary over outdated ones.
* FIX: Llm selector / forced tools / search tool
This fixes a few issues:
1. When search was not finding any semantic results we would break the tool
2. Gemin / Anthropic models did not implement forced tools previously despite it being an API option
3. Mechanics around displaying llm selector were not right. If you disabled LLM selector server side persona PM did not work correctly.
4. Disabling native tools for anthropic model moved out of a site setting. This deliberately does not migrate cause this feature is really rare to need now, people who had it set probably did not need it.
5. Updates anthropic model names to latest release
* linting
* fix a couple of tests I missed
* clean up conditional
* Display gists in the hot topics list
* Adjust hot topics gist strategy and add a job to generate gists
* Replace setting with a configurable batch size
* Avoid loading summaries for other topic lists
* Tweak gist prompt to focus on latest posts in the context of the OP
* Remove serializer hack and rely on core change from discourse/discourse#29291
* Update lib/summarization/strategies/hot_topic_gists.rb
Co-authored-by: Rafael dos Santos Silva <xfalcox@gmail.com>
---------
Co-authored-by: Rafael dos Santos Silva <xfalcox@gmail.com>
New `ai_pm_summarization_allowed_groups` can be used to allow
visibility of the summarization feature on PMs.
This can be useful on forums where a lot of communication happens
inside PMs.
* DEV: Remove old code now that features rely on LlmModels.
* Hide old settings and migrate persona llm overrides
* Remove shadowing special URL + seeding code. Use srv:// prefix instead.
This allows summary to use the new LLM models and migrates of API key based model selection
Claude 3.5 etc... all work now.
---------
Co-authored-by: Roman Rizzi <rizziromanalejandro@gmail.com>
* DRAFT: Create AI Bot users dynamically and support custom LlmModels
* Get user associated to llm_model
* Track enabled bots with attribute
* Don't store bot username. Minor touches to migrate default values in settings
* Handle scenario where vLLM uses a SRV record
* Made 3.5-turbo-16k the default version so we can remove hack
Native tools do not work well on Opus.
Chain of Thought prompting means it consumes enormous amounts of
tokens and has poor latency.
This commit introduce and XML stripper to remove various chain of
thought XML islands from anthropic prompts when tools are involved.
This mean Opus native tools is now functions (albeit slowly)
From local testing XML just works better now.
Also fixes enum support in Anthropic native tools
Previoulsy on GPT-4-vision was supported, change introduces support
for Google/Anthropic and new OpenAI models
Additionally this makes vision work properly in dev environments
cause we sent the encoded payload via prompt vs sending urls
- a post can be triaged a maximum of twice a minute
- system can run a total of 60 triages a minute
Low defaults were picked to safeguard against any possible loops
This can be amended if required via hidden site settings.
- Introduce new support for GPT4o (automation / bot / summary / helper)
- Properly account for token counts on OpenAI models
- Track feature that was used when generating AI completions
- Remove custom llm support for summarization as we need better interfaces to control registration and de-registration
Both endpoints provide OpenAI-compatible servers. The only difference is that Vllm doesn't support passing tools as a separate parameter. Even if the tool param is supported, it ultimately relies on the model's ability to handle native functions, which is not the case with the models we have today.
As a part of this change, we are dropping support for StableBeluga/Llama2 models. They don't have a chat_template, meaning the new API can translate them.
These changes let us remove some of our existing dialects and are a first step in our plan to support any LLM by defining them as data-driven concepts.
I rewrote the "translate" method to use a template method and extracted the tool support strategies into its classes to simplify the code.
Finally, these changes bring support for Ollama when running in dev mode. It only works with Mistral for now, but it will change soon..
- Adds support for sd3 and sd3 turbo models - this requires new endpoints
- Adds a hack to normalize arrays in the tool calls
- Removes some leftover code
- Adds support for aspect ratio as well so you can generate wide or tall images
- Updated AI Bot to only support Gemini 1.5 (used to support 1.0) - 1.0 was removed cause it is not appropriate for Bot usage
- Summaries and automation can now lean on Gemini 1.5 pro
- Amazon added support for Claude 3 Opus, added internal support for it on bedrock
* FIX: various RAG edge cases
- Nicer text to describe RAG, avoids the word RAG
- Do not attempt to save persona when removing uploads and it is not created
- Remove old code that avoided touching rag params on create
* FIX: Missing pause button for persona users
* Feature: allow specific users to debug ai request / response chains
This can help users easily tune RAG and figure out what is going
on with requests.
* discourse helper so it does not explode
* fix test
* simplify implementation
- Added Cohere Command models (Command, Command Light, Command R, Command R Plus) to the available model list
- Added a new site setting `ai_cohere_api_key` for configuring the Cohere API key
- Implemented a new `DiscourseAi::Completions::Endpoints::Cohere` class to handle interactions with the Cohere API, including:
- Translating request parameters to the Cohere API format
- Parsing Cohere API responses
- Supporting streaming and non-streaming completions
- Supporting "tools" which allow the model to call back to discourse to lookup additional information
- Implemented a new `DiscourseAi::Completions::Dialects::Command` class to translate between the generic Discourse AI prompt format and the Cohere Command format
- Added specs covering the new Cohere endpoint and dialect classes
- Updated `DiscourseAi::AiBot::Bot.guess_model` to map the new Cohere model to the appropriate bot user
In summary, this PR adds support for using the Cohere Command family of models with the Discourse AI plugin. It handles configuring API keys, making requests to the Cohere API, and translating between Discourse's generic prompt format and Cohere's specific format. Thorough test coverage was added for the new functionality.
BAAI/bge-m3 is an interesting model, that is multilingual and with a
context size of 8192. Even with a 16x larger context, it's only 4x slower
to compute it's embeddings on the worst case scenario.
Also includes a minor refactor of the rake task, including setting model
and concurrency levels when running the backfill task.
it is close in performance to GPT 4 at a fraction of the cost,
nice to add it to the mix.
Also improves a test case to simulate streaming, I am hunting for
the "calls" word that is jumping into function calls and can't quite
find it.
* FIX: Handle unicode on tokenizer
Our fast track code broke when strings had characters who are longer in tokens than
in UTF-8.
Admins can set `DISCOURSE_AI_STRICT_TOKEN_COUNTING: true` in app.yml to ensure token counting is strict, even if slower.
Co-authored-by: wozulong <sidle.pax_0e@icloud.com>
This allows users to share a static page of an AI conversation with
the rest of the world.
By default this feature is disabled, it is enabled by turning on
ai_bot_allow_public_sharing via site settings
Precautions are taken when sharing
1. We make a carbonite copy
2. We minimize work generating page
3. We limit to 100 interactions
4. Many security checks - including disallowing if there is a mix
of users in the PM.
* Bonus commit, large PRs like this PR did not work with github tool
large objects would destroy context
Co-authored-by: Martin Brennan <martin@discourse.org>
This PR adds AI semantic search to the search pop available on every page.
It depends on several new and optional settings, like per post embeddings and a reranker model, so this is an experimental endeavour.
---------
Co-authored-by: Rafael Silva <xfalcox@gmail.com>
Introduces a new AI Bot persona called 'GitHub Helper' which is specialized in assisting with GitHub-related tasks and questions. It includes the following key changes:
- Implements the GitHub Helper persona class with its system prompt and available tools
- Adds three new AI Bot tools for GitHub interactions:
- github_file_content: Retrieves content of files from a GitHub repository
- github_pull_request_diff: Retrieves the diff for a GitHub pull request
- github_search_code: Searches for code in a GitHub repository
- Updates the AI Bot dialects to support the new GitHub tools
- Implements multiple function calls for standard tool dialect
This provides new support for messages API from Claude.
It is required for latest model access.
Also corrects implementation of function calls.
* Fix message interleving
* fix broken spec
* add new models to automation
This PR adds a new feature where you can generate captions for images in the composer using AI.
---------
Co-authored-by: Rafael Silva <xfalcox@gmail.com>
Affects the following settings:
ai_toxicity_groups_bypass
ai_helper_allowed_groups
ai_helper_custom_prompts_allowed_groups
post_ai_helper_allowed_groups
This turns off client: true for these group-based settings,
because there is no guarantee that the current user gets all
their group memberships serialized to the client. Better to check
server-side first.
* UX: Validations to Llm-backed features (except AI Bot)
This change is part of an ongoing effort to prevent enabling a broken feature due to lack of configuration. We also want to explicit which provider we are going to use. For example, Claude models are available through AWS Bedrock and Anthropic, but the configuration differs.
Validations are:
* You must choose a model before enabling the feature.
* You must turn off the feature before setting the model to blank.
* You must configure each model settings before being able to select it.
* Add provider name to summarization options
* vLLM can technically support same models as HF
* Check we can talk to the selected model
* Check for Bedrock instead of anthropic as a site could have both creds setup
* FEATURE: add support for new OpenAI embedding models
This adds support for just released text_embedding_3_small and large
Note, we have not yet implemented truncation support which is a
new API feature. (triggered using dimensions)
* Tiny side fix, recalc bots when ai is enabled or disabled
* FIX: downsample to 2000 items per vector which is a pgvector limitation