In a previous refactor, we moved the responsibility of querying and storing embeddings into the `Schema` class. Now, it's time for embedding generation.
The motivation behind these changes is to isolate vector characteristics in simple objects to later replace them with a DB-backed version, similar to what we did with LLM configs.
We are adding a new method for generating and storing embeddings in bulk, which relies on `Concurrent::Promises::Future`. Generating an embedding consists of three steps:
Prepare text
HTTP call to retrieve the vector
Save to DB.
Each one is independently executed on whatever thread the pool gives us.
We are bringing a custom thread pool instead of the global executor since we want control over how many threads we spawn to limit concurrency. We also avoid firing thousands of HTTP requests when working with large batches.
Two changes worth mentioning:
`#instance` returns a fully configured embedding endpoint ready to use.
All endpoints respond to the same method and have the same signature - `perform!(text)`
This makes it easier to reuse them when generating embeddings in bulk.
This PR adds AI semantic search to the search pop available on every page.
It depends on several new and optional settings, like per post embeddings and a reranker model, so this is an experimental endeavour.
---------
Co-authored-by: Rafael Silva <xfalcox@gmail.com>
This allows admins to configure services with multiple backends using DNS SRV records. This PR also adds support for shared secret auth via headers for TEI and vLLM endpoints, so they are inline with the other ones.
Previous to this change we relied on explicit loading for a files in Discourse AI.
This had a few downsides:
- Busywork whenever you add a file (an extra require relative)
- We were not keeping to conventions internally ... some places were OpenAI others are OpenAi
- Autoloader did not work which lead to lots of full application broken reloads when developing.
This moves all of DiscourseAI into a Zeitwerk compatible structure.
It also leaves some minimal amount of manual loading (automation - which is loading into an existing namespace that may or may not be there)
To avoid needing /lib/discourse_ai/... we mount a namespace thus we are able to keep /lib pointed at ::DiscourseAi
Various files were renamed to get around zeitwerk rules and minimize usage of custom inflections
Though we can get custom inflections to work it is not worth it, will require a Discourse core patch which means we create a hard dependency.