Commit Graph

89 Commits

Author SHA1 Message Date
Sam 5cbc9190eb
FEATURE: RAG search within tools (#802)
This allows custom tools access to uploads and sophisticated searches using embedding.

It introduces:

 - A shared front end for listing and uploading files (shared with personas)
 -  Backend implementation of index.search function within a custom tool.

Custom tools now may search through uploaded files

function invoke(params) {
   return index.search(params.query)
}

This means that RAG implementers now may preload tools with knowledge and have high fidelity over
the search.

The search function support

    specifying max results
    specifying a subset of files to search (from uploads)

Also

 - Improved documentation for tools (when creating a tool a preamble explains all the functionality)
  - uploads were a bit finicky, fixed an edge case where the UI would not show them as updated
2024-09-30 17:27:50 +10:00
Kris 18ecc843e5
UX: move templates to main LLM config tab, restyle (#813)
Restructures LLM config page so it is far clearer. 

Also corrects bugs around adding LLMs and having LLMs not editable post addition 
---------

Co-authored-by: Sam Saffron <sam.saffron@gmail.com>
2024-09-30 17:15:11 +10:00
Sam 03eccbe392
FEATURE: Make tool support polymorphic (#798)
Polymorphic RAG means that we will be able to access RAG fragments both from AiPersona and AiCustomTool

In turn this gives us support for richer RAG implementations.
2024-09-16 08:17:17 +10:00
Sam cabecb801e
FEATURE: disable rate limiting when skipping hyde (#793)
Embedding search is rate limited due to potentially expensive
hyde operation (which require LLM access).

Embedding generally is very cheap compared to it. (usually 100x cheaper)

This raises the limit to 100 per minute for embedding searches,
while keeping the old 4 per minute for HyDE powered search.
2024-09-04 15:51:01 +10:00
Roman Rizzi e408cd080c
FIX: coerce value before downcasing the hyde param (#787) 2024-08-30 12:13:29 -03:00
Rafael dos Santos Silva a08d168740
FEATURE: Initial support for seeded LLMs (#756) 2024-08-28 15:57:58 -03:00
Sam 0687ec75c3
FEATURE: allow embedding based search without hyde (#777)
This allows callers of embedding based search to bypass hyde.

Hyde will expand the search term using an LLM, but if an LLM is
performing the search we can skip this expansion.

It also introduced some tests for the controller which we did not have
2024-08-28 14:17:34 +10:00
Roman Rizzi 64641b6175
FEATURE: LLM Triage support for systemless models. (#757)
* FEATURE: LLM Triage support for systemless models.

This change adds support for OSS models without support for system messages. LlmTriage's system message field is no longer mandatory. We now send the post contents in a separate user message.

* Models using Ollama can also disable system prompts
2024-08-21 11:41:55 -03:00
Sam 14443bf890
FIX: more robust summary implementation (#750)
When navigating between topic we were not correctly resetting
internal state for summarization. This leads to a situation where
incorrect summaries can be displayed to users and wrong summaries
can be displayed.

Additionally our controller for grabbing summaries was always
streaming results via message bus, which could be delayed when
sidekiq is overloaded. We now will return the cached summary
right away if it is available direct from REST endpoint.
2024-08-13 08:47:47 -03:00
Keegan George f72ab12761
DEV: Clearly separate post/composer helper settings (#747) 2024-08-12 15:40:23 -07:00
Keegan George 1d6a6c9f8f
FEATURE: Stream other post helper options (#745) 2024-08-08 11:32:39 -07:00
Roman Rizzi 7b4c099673
FIX: LlmModel validations. (#742)
- Validate fields to reduce the chance of breaking features by a misconfigured model.
- Fixed a bug where the URL might get deleted during an update.
- Display a warning when a model is currently in use.
2024-08-06 14:35:35 -03:00
Sam c16c622b53
FIX: properly pass errors to client (#731)
render_json_error expects a AR model not a serializer, using a
serializer eats up the error message
2024-07-31 17:53:18 +10:00
Roman Rizzi bed044448c
DEV: Remove old code now that features rely on LlmModels. (#729)
* DEV: Remove old code now that features rely on LlmModels.

* Hide old settings and migrate persona llm overrides

* Remove shadowing special URL + seeding code. Use srv:// prefix instead.
2024-07-30 13:44:57 -03:00
Roman Rizzi 5c196bca89
FEATURE: Track if a model can do vision in the llm_models table (#725)
* FEATURE: Track if a model can do vision in the llm_models table

* Data migration
2024-07-24 16:29:47 -03:00
Roman Rizzi f328b81c78
FIX: Make sure custom tool enums follow json-schema. (#718)
Enums didn't work as expected because we the dialect couldn't translate
them correctly. It doesn't understand what "enum_values" is.
2024-07-16 14:23:17 -03:00
Keegan George eab2f74b58
DEV: Use site locale for composer helper translations (#698) 2024-07-04 08:23:37 -07:00
Sam 1320eed9b2
FEATURE: move summary to use llm_model (#699)
This allows summary to use the new LLM models and migrates of API key based model selection

Claude 3.5 etc... all work now. 

---------

Co-authored-by: Roman Rizzi <rizziromanalejandro@gmail.com>
2024-07-04 10:48:18 +10:00
Keegan George 1b0ba9197c
DEV: Add summarization logic from core (#658) 2024-07-02 08:51:59 -07:00
Jarek Radosz a5a39dd2ee
DEV: Clean up after #677 (#694)
Follow up to b863ddc94b

Ruby:
* Validate `summary` (the column is `not null`)
* Fix `name` validation (the column has `max_length` 100)
* Fix table annotations
* Accept missing `parameter` attributes (`required, `enum`, `enum_values`)

JS:
* Use native classes
* Don't use ember's array extensions
* Add explicit service injections
* Correct class names
* Use `||=` operator
* Use `store` service to create records
* Remove unused service injections
* Extract consts
* Group actions together
* Use `async`/`await`
* Use `withEventValue`
* Sort html attributes
* Use DButtons `@label` arg
* Use `input` elements instead of Ember's `Input` component (same w/ textarea)
* Remove `btn-default` class (automatically applied by DButton)
* Don't mix `I18n.t` and `i18n` in the same template
* Don't track props that aren't used in a template
* Correct invalid `target.value` code
* Remove unused/invalid `this.parameter`/`onChange` code
* Whitespace
* Use the new service import `inject as service` -> `service`
* Use `Object.entries()`
* Add missing i18n strings
* Fix an error in `addEnumValue` (calling `pushObject` on `undefined`)
* Use `TrackedArray`/`TrackedObject`
* Transform tool `parameters` keys (`enumValues` -> `enum_values`)
2024-06-28 08:59:51 +10:00
Jan Cernik 8e83c091a2
DEV: Use explicit serializers for all models (#691) 2024-06-27 10:43:00 -03:00
Sam b863ddc94b
FEATURE: custom user defined tools (#677)
Introduces custom AI tools functionality. 

1. Why it was added:
   The PR adds the ability to create, manage, and use custom AI tools within the Discourse AI system. This feature allows for more flexibility and extensibility in the AI capabilities of the platform.

2. What it does:
   - Introduces a new `AiTool` model for storing custom AI tools
   - Adds CRUD (Create, Read, Update, Delete) operations for AI tools
   - Implements a tool runner system for executing custom tool scripts
   - Integrates custom tools with existing AI personas
   - Provides a user interface for managing custom tools in the admin panel

3. Possible use cases:
   - Creating custom tools for specific tasks or integrations (stock quotes, currency conversion etc...)
   - Allowing administrators to add new functionalities to AI assistants without modifying core code
   - Implementing domain-specific tools for particular communities or industries

4. Code structure:
   The PR introduces several new files and modifies existing ones:

   a. Models:
      - `app/models/ai_tool.rb`: Defines the AiTool model
      - `app/serializers/ai_custom_tool_serializer.rb`: Serializer for AI tools

   b. Controllers:
      - `app/controllers/discourse_ai/admin/ai_tools_controller.rb`: Handles CRUD operations for AI tools

   c. Views and Components:
      - New Ember.js components for tool management in the admin interface
      - Updates to existing AI persona management components to support custom tools 

   d. Core functionality:
      - `lib/ai_bot/tool_runner.rb`: Implements the custom tool execution system
      - `lib/ai_bot/tools/custom.rb`: Defines the custom tool class

   e. Routes and configurations:
      - Updates to route configurations to include new AI tool management pages

   f. Migrations:
      - `db/migrate/20240618080148_create_ai_tools.rb`: Creates the ai_tools table

   g. Tests:
      - New test files for AI tool functionality and integration

The PR integrates the custom tools system with the existing AI persona framework, allowing personas to use both built-in and custom tools. It also includes safety measures such as timeouts and HTTP request limits to prevent misuse of custom tools.

Overall, this PR significantly enhances the flexibility and extensibility of the Discourse AI system by allowing administrators to create and manage custom AI tools tailored to their specific needs.

Co-authored-by: Martin Brennan <martin@discourse.org>
2024-06-27 17:27:40 +10:00
Roman Rizzi e39e0bdb4a
FIX: Move the bot user toggling to the controller. (#688)
Having this as a callback prevents deploys of sites with a vLLM SRV configured and pending migrations. Additionally, this fixes a bug where we didn't delete/deactivate the companion user after deleting an LLM.
2024-06-25 12:45:19 -03:00
Roman Rizzi f622e2644f
FEATURE: Store provider-specific parameters. (#686)
Previously, we stored request parameters like the OpenAI organization and Bedrock's access key and region as site settings. This change stores them in the `llm_models` table instead, letting us drop more settings while also becoming more flexible.
2024-06-25 08:26:30 +10:00
Sam e04a7be122
FEATURE: LLM presets for model creation (#681)
* FEATURE: LLM presets for model creation

Previous to this users needed to look up complicated settings
when setting up models.

This introduces and extensible preset system with Google/OpenAI/Anthropic
presets.

This will cover all the most common LLMs, we can always add more as
we go.

Additionally:

- Proper support for Anthropic Claude Sonnet 3.5
- Stop blurring api keys when navigating away - this made it very complex to reuse keys
2024-06-21 17:32:15 +10:00
Roman Rizzi 8849caf136
DEV: Transition "Select model" settings to only use LlmModels (#675)
We no longer support the "provider:model" format in the "ai_helper_model" and
"ai_embeddings_semantic_search_hyde_model" settings. We'll migrate existing
values and work with our new data-driven LLM configs from now on.
2024-06-19 18:01:35 -03:00
Sam 0d6d9a6ef5
FEATURE: allow access to private topics if tool permits (#673)
Previously read tool only had access to public topics, this allows
access to all topics user has access to, if admin opts for the option
Also

- Fixes VLLM migration
- Display which llms have bot enabled
2024-06-19 15:49:36 +10:00
Roman Rizzi 8d5f901a67
DEV: Rewire AI bot internals to use LlmModel (#638)
* DRAFT: Create AI Bot users dynamically and support custom LlmModels

* Get user associated to llm_model

* Track enabled bots with attribute

* Don't store bot username. Minor touches to migrate default values in settings

* Handle scenario where vLLM uses a SRV record

* Made 3.5-turbo-16k the default version so we can remove hack
2024-06-18 14:32:14 -03:00
Sam 52a7dd2a4b
FEATURE: optional tool detail blocks (#662)
This is a rather huge refactor with 1 new feature (tool details can
be suppressed)

Previously we use the name "Command" to describe "Tools", this unifies
all the internal language and simplifies the code.

We also amended the persona UI to use less DToggles which aligns
with our design guidelines.

Co-authored-by: Martin Brennan <martin@discourse.org>
2024-06-11 18:14:14 +10:00
Sam 13840f68b3
FEATURE: restrict public sharing on login required sites (#649)
Initial implementation allowed internet wide sharing of
AI conversations, on sites that require login.

This feature can be an anti feature for private sites cause they
can not share conversations internally.

For now we are removing support for public sharing on login required
sites, if the community need the feature we can consider adding a
setting.
2024-05-29 11:04:47 +10:00
Sam b487de933d
FEATURE: add support for all vision models (#646)
Previoulsy on GPT-4-vision was supported, change introduces support
for Google/Anthropic and new OpenAI models

Additionally this makes vision work properly in dev environments
cause we sent the encoded payload via prompt vs sending urls
2024-05-28 10:31:15 -03:00
Roman Rizzi 333b331eb9
FEATURE: Allow deleting custom LLMs. (#643)
This change allows us to delete custom models. It checks if there is no module using them.

It also fixes a bug where the after-create transition wasn't working. While this prevents a model from being saved multiple times, endpoint validations are still needed (will be added in a separate PR).:
2024-05-27 16:44:08 -03:00
Keegan George a1c649965f
FEATURE: Auto image captions (#637) 2024-05-27 10:49:24 -07:00
Ted Johansson d8a0f44fed
FIX: Amend incorrect translation keys (#639)
I am enabling config.i18n.raise_on_missing_translations in core. This revealed a couple of broken translations in the plugin.
2024-05-24 20:00:36 +08:00
Roman Rizzi 3a9080dd14
FEATURE: Test LLM configuration (#634) 2024-05-21 13:35:50 -03:00
Roman Rizzi 1d786fbaaf
FEATURE: Set endpoint credentials directly from LlmModel. (#625)
* FEATURE: Set endpoint credentials directly from LlmModel.

Drop Llama2Tokenizer since we no longer use it.

* Allow http for custom LLMs

---------

Co-authored-by: Rafael Silva <xfalcox@gmail.com>
2024-05-16 09:50:22 -03:00
Roman Rizzi e22194f321
HACK: Llama3 support for summarization/AI helper. (#616)
There are still some limitations to which models we can support with the `LlmModel` class. This will enable support for Llama3 while we sort those out.
2024-05-13 15:54:42 -03:00
Roman Rizzi 62fc7d6ed0
FEATURE: Configurable LLMs. (#606)
This PR introduces the concept of "LlmModel" as a new way to quickly add new LLM models without making any code changes. We are releasing this first version and will add incremental improvements, so expect changes.

The AI Bot can't fully take advantage of this feature as users are hard-coded. We'll fix this in a separate PR.s
2024-05-13 12:46:42 -03:00
Bianca Nenciu 5861418e9d
FIX: Load categories for AI search results (#614)
Categories should be preloaded when "lazy load categories" is enabled.
2024-05-13 16:47:37 +03:00
Sam e4b326c711
FEATURE: support Chat with AI Persona via a DM (#488)
Add support for chat with AI personas

- Allow enabling chat for AI personas that have an associated user
- Add new setting `allow_chat` to AI persona to enable/disable chat
- When a message is created in a DM channel with an allowed AI persona user, schedule a reply job
- AI replies to chat messages using the persona's `max_context_posts` setting to determine context
- Store tool calls and custom prompts used to generate a chat reply on the `ChatMessageCustomPrompt` table
- Add tests for AI chat replies with tools and context

At the moment unlike posts we do not carry tool calls in the context.

No @mention support yet for ai personas in channels, this is future work
2024-05-06 09:49:02 +10:00
Sam 32b3004ce9
FEATURE: Add Question Consolidator for robust Upload support in Personas (#596)
This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments.

Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer. 

EG:

- User: how many cars are there in europe
- Model: detailed answer about cars in europe including the term car and vehicle many times
- User: Nice, what about trains are there in the US

In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal. 

Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content. 

The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui.

This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation. 

Key changes:

1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation.

2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt.

3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question.

4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration.

5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality.

This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
2024-04-30 13:49:21 +10:00
Roman Rizzi 283445cf81
FIX: RAG uploader must support multi-file indexing. (#592)
Updating the editing model's rag_uploads in the editor component broke multi-file uploading. Instead, we'll keep the uploads in the uploader and update the model when we finish.

This PR also fast-tracks the initial update so we can show feedback to the user quickly, and allows uploading MD files.

Bug reported on https://meta.discourse.org/t/discourse-ai-persona-upload-support/304049/11
2024-04-25 10:48:55 -03:00
Sam 4a29f8ed1c
FEATURE: Enhance AI debugging capabilities and improve interface adjustments (#577)
* FIX: various RAG edge cases

- Nicer text to describe RAG, avoids the word RAG
- Do not attempt to save persona when removing uploads and it is not created
- Remove old code that avoided touching rag params on create

* FIX: Missing pause button for persona users

* Feature: allow specific users to debug ai request / response chains

This can help users easily tune RAG and figure out what is going
on with requests.

* discourse helper so it does not explode

* fix test

* simplify implementation
2024-04-15 23:22:06 +10:00
Sam f6ac5cd0a8
FEATURE: allow tuning of RAG generation (#565)
* FEATURE: allow tuning of RAG generation

- change chunking to be token based vs char based (which is more accurate)
- allow control over overlap / tokens per chunk and conversation snippets inserted
- UI to control new settings

* improve ui a bit

* fix various reindex issues

* reduce concurrency

* try ultra low queue ... concurrency 1 is too slow.
2024-04-12 10:32:46 -03:00
Martin Brennan bab5e52e38
FIX: Secure/unsecure uploads when sharing AI conversations (#554)
This commit uses a new plugin modifier introduced in https://github.com/discourse/discourse/pull/26508
to mark all uploads as _not_ secure in shared PM AI conversations.
This is so images created by the AI bot (or uploaded by the user)
do not end up as broken URLs because of the security requirements
around them.

This relies on the UpdateTopicUploadSecurity job in core as well,
which is fired when an AI conversation is shared or deleted.
2024-04-11 10:00:41 +10:00
Roman Rizzi aa8918911d
UX: Display the indexing progress for RAG uploads (#557) 2024-04-09 11:03:07 -03:00
Roman Rizzi 1f1c94e5c6
FEATURE: AI Bot RAG support. (#537)
This PR lets you associate uploads to an AI persona, which we'll split and generate embeddings from. When building the system prompt to get a bot reply, we'll do a similarity search followed by a re-ranking (if available). This will let us find the most relevant fragments from the body of knowledge you associated with the persona, resulting in better, more informed responses.

For now, we'll only allow plain-text files, but this will change in the future.

Commits:

* FEATURE: RAG embeddings for the AI Bot

This first commit introduces a UI where admins can upload text files, which we'll store, split into fragments,
and generate embeddings of. In a next commit, we'll use those to give the bot additional information during
conversations.

* Basic asymmetric similarity search to provide guidance in system prompt

* Fix tests and lint

* Apply reranker to fragments

* Uploads filter, css adjustments and file validations

* Add placeholder for rag fragments

* Update annotations
2024-04-01 13:43:34 -03:00
Sam 61e4c56e1a
FEATURE: Add vision support to AI personas (Claude 3) (#546)
This commit adds the ability to enable vision for AI personas, allowing them to understand images that are posted in the conversation.

For personas with vision enabled, any images the user has posted will be resized to be within the configured max_pixels limit, base64 encoded and included in the prompt sent to the AI provider.

The persona editor allows enabling/disabling vision and has a dropdown to select the max supported image size (low, medium, high). Vision is disabled by default.

This initial vision support has been tested and implemented with Anthropic's claude-3 models which accept images in a special format as part of the prompt.

Other integrations will need to be updated to support images.

Several specs were added to test the new functionality at the persona, prompt building and API layers.

 - Gemini is omitted, pending API support for Gemini 1.5. Current Gemini bot is not performing well, adding images is unlikely to make it perform any better.

 - Open AI is omitted, vision support on GPT-4 it limited in that the API has no tool support when images are enabled so we would need to full back to a different prompting technique, something that would add lots of complexity


---------

Co-authored-by: Martin Brennan <martin@discourse.org>
2024-03-27 14:30:11 +11:00
Sam a03bc6ddec
FEATURE: Share conversations with AI via a URL (#521)
This allows users to share a static page of an AI conversation with
the rest of the world.

By default this feature is disabled, it is enabled by turning on
ai_bot_allow_public_sharing via site settings

Precautions are taken when sharing

1. We make a carbonite copy
2. We minimize work generating page
3. We limit to 100 interactions
4. Many security checks - including disallowing if there is a mix
of users in the PM.

* Bonus commit, large PRs like this PR did not work with github tool
large objects would destroy context


Co-authored-by: Martin Brennan <martin@discourse.org>
2024-03-12 16:51:41 +11:00
Keegan George b515b4f66d
FEATURE: AI Quick Semantic Search (#501)
This PR adds AI semantic search to the search pop available on every page.

It depends on several new and optional settings, like per post embeddings and a reranker model, so this is an experimental endeavour.


---------

Co-authored-by: Rafael Silva <xfalcox@gmail.com>
2024-03-08 13:02:50 -03:00