* FEATURE: Make emotion /filter ordering match the dashboard table
This change makes the /filter endpoint use the same criteria we use
in the dashboard table for emotion, so it is not confusing for users.
It means that only posts made in the period with the emotion shall be
shown in the /filter, and the order is simply a count of posts that
match the emotion in the period.
It also uses a trick to extract the filter period, and apply it to
the CTE clause that calculates post emotion count on the period, making
it a bit more efficient. Downside is that /filter filters are evaluated
from left to right, so it will only get the speed-up if the emotion
order is last. As we do this on the dashboard table, it should cover
most uses of the ordering, kicking the need for materialized views
down the road.
* Remove zero score in filter
* add table tooltip
* lint
This is a significant PR that introduces AI Artifacts functionality to the discourse-ai plugin along with several other improvements. Here are the key changes:
1. AI Artifacts System:
- Adds a new `AiArtifact` model and database migration
- Allows creation of web artifacts with HTML, CSS, and JavaScript content
- Introduces security settings (`strict`, `lax`, `disabled`) for controlling artifact execution
- Implements artifact rendering in iframes with sandbox protection
- New `CreateArtifact` tool for AI to generate interactive content
2. Tool System Improvements:
- Adds support for partial tool calls, allowing incremental updates during generation
- Better handling of tool call states and progress tracking
- Improved XML tool processing with CDATA support
- Fixes for tool parameter handling and duplicate invocations
3. LLM Provider Updates:
- Updates for Anthropic Claude models with correct token limits
- Adds support for native/XML tool modes in Gemini integration
- Adds new model configurations including Llama 3.1 models
- Improvements to streaming response handling
4. UI Enhancements:
- New artifact viewer component with expand/collapse functionality
- Security controls for artifact execution (click-to-run in strict mode)
- Improved dialog and response handling
- Better error management for tool execution
5. Security Improvements:
- Sandbox controls for artifact execution
- Public/private artifact sharing controls
- Security settings to control artifact behavior
- CSP and frame-options handling for artifacts
6. Technical Improvements:
- Better post streaming implementation
- Improved error handling in completions
- Better memory management for partial tool calls
- Enhanced testing coverage
7. Configuration:
- New site settings for artifact security
- Extended LLM model configurations
- Additional tool configuration options
This PR significantly enhances the plugin's capabilities for generating and displaying interactive content while maintaining security and providing flexible configuration options for administrators.
This re-implements tool support in DiscourseAi::Completions::Llm #generate
Previously tool support was always returned via XML and it would be the responsibility of the caller to parse XML
New implementation has the endpoints return ToolCall objects.
Additionally this simplifies the Llm endpoint interface and gives it more clarity. Llms must implement
decode, decode_chunk (for streaming)
It is the implementers responsibility to figure out how to decode chunks, base no longer implements. To make this easy we ship a flexible json decoder which is easy to wire up.
Also (new)
Better debugging for PMs, we now have a next / previous button to see all the Llm messages associated with a PM
Token accounting is fixed for vllm (we were not correctly counting tokens)
The new `/admin/plugins/discourse-ai/ai-personas/stream-reply.json` was added.
This endpoint streams data direct from a persona and can be used
to access a persona from remote systems leaving a paper trail in
PMs about the conversation that happened
This endpoint is only accessible to admins.
---------
Co-authored-by: Gabriel Grubba <70247653+Grubba27@users.noreply.github.com>
Co-authored-by: Keegan George <kgeorge13@gmail.com>
* FIX: Llm selector / forced tools / search tool
This fixes a few issues:
1. When search was not finding any semantic results we would break the tool
2. Gemin / Anthropic models did not implement forced tools previously despite it being an API option
3. Mechanics around displaying llm selector were not right. If you disabled LLM selector server side persona PM did not work correctly.
4. Disabling native tools for anthropic model moved out of a site setting. This deliberately does not migrate cause this feature is really rare to need now, people who had it set probably did not need it.
5. Updates anthropic model names to latest release
* linting
* fix a couple of tests I missed
* clean up conditional
A new feature_context json column was added to ai_api_audit_logs
This allows us to store rich json like context on any LLM request
made.
This new field now stores automation id and name.
Additionally allows llm_triage to specify maximum number of tokens
This means that you can limit the cost of llm triage by scanning only
first N tokens of a post.
This changeset:
1. Corrects some issues with "force_default_llm" not applying
2. Expands the LLM list page to show LLM usage
3. Clarifies better what "enabling a bot" on an llm means (you get it in the selector)
Splits persona permissions so you can allow a persona on:
- chat dms
- personal messages
- topic mentions
- chat channels
(any combination is allowed)
Previously we did not have this flexibility.
Additionally, adds the ability to "tether" a language model to a persona so it will always be used by the persona. This allows people to use a cheaper language model for one group of people and more expensive one for other people
This introduces another configuration that allows operators to
limit the amount of interactions with forced tool usage.
Forced tools are very handy in initial llm interactions, but as
conversation progresses they can hinder by slowing down stuff
and adding confusion.
* FEATURE: allows forced LLM tool use
Sometimes we need to force LLMs to use tools, for example in RAG
like use cases we may want to force an unconditional search.
The new framework allows you backend to force tool usage.
Front end commit to follow
* UI for forcing tools now works, but it does not react right
* fix bugs
* fix tests, this is now ready for review
Previous to this change we could flag, but there was no way
to hide content and treat the flag as spam.
We had the option to hide topics, but this is not desirable for
a spam reply.
New option allows triage to hide a post if it is a reply, if the
post happens to be the first post on the topic, the topic will
be hidden.
This allows custom tools access to uploads and sophisticated searches using embedding.
It introduces:
- A shared front end for listing and uploading files (shared with personas)
- Backend implementation of index.search function within a custom tool.
Custom tools now may search through uploaded files
function invoke(params) {
return index.search(params.query)
}
This means that RAG implementers now may preload tools with knowledge and have high fidelity over
the search.
The search function support
specifying max results
specifying a subset of files to search (from uploads)
Also
- Improved documentation for tools (when creating a tool a preamble explains all the functionality)
- uploads were a bit finicky, fixed an edge case where the UI would not show them as updated
Restructures LLM config page so it is far clearer.
Also corrects bugs around adding LLMs and having LLMs not editable post addition
---------
Co-authored-by: Sam Saffron <sam.saffron@gmail.com>
Previously we had some hardcoded markup with scss making a loading indicator wave. This code was being duplicated and used in both semantic search and summarization. We want to add the indicator wave to the AI helper diff modal as well and have the text flashing instead of the loading spinner. To ensure we do not repeat ourselves, in this PR we turn the summary indicator wave into a reusable template only component called: `AiIndicatorWave`. We then apply the usage of that component to semantic search, summarization, and the composer helper modal.
Previously we had moved the AI helper from the options menu to a selection menu that appears when selecting text in the composer. This had the benefit of making the AI helper a more discoverable feature. Now that some time has passed and the AI helper is more recognized, we will be moving it back to the composer toolbar.
This is better because:
- It consistent with other behavior and ways of accessing tools in the composer
- It has an improved mobile experience
- It reduces unnecessary code and keeps things easier to migrate when we have composer V2.
- It allows for easily triggering AI helper for all content by clicking the button instead of having to select everything.
Previously there was too much work proofreading text, new implementation
provides a single shortcut and easy way of proofreading text.
Co-authored-by: Martin Brennan <martin@discourse.org>
* FEATURE: LLM Triage support for systemless models.
This change adds support for OSS models without support for system messages. LlmTriage's system message field is no longer mandatory. We now send the post contents in a separate user message.
* Models using Ollama can also disable system prompts
- Validate fields to reduce the chance of breaking features by a misconfigured model.
- Fixed a bug where the URL might get deleted during an update.
- Display a warning when a model is currently in use.
* DEV: Remove old code now that features rely on LlmModels.
* Hide old settings and migrate persona llm overrides
* Remove shadowing special URL + seeding code. Use srv:// prefix instead.
Follow up to b863ddc94b
Ruby:
* Validate `summary` (the column is `not null`)
* Fix `name` validation (the column has `max_length` 100)
* Fix table annotations
* Accept missing `parameter` attributes (`required, `enum`, `enum_values`)
JS:
* Use native classes
* Don't use ember's array extensions
* Add explicit service injections
* Correct class names
* Use `||=` operator
* Use `store` service to create records
* Remove unused service injections
* Extract consts
* Group actions together
* Use `async`/`await`
* Use `withEventValue`
* Sort html attributes
* Use DButtons `@label` arg
* Use `input` elements instead of Ember's `Input` component (same w/ textarea)
* Remove `btn-default` class (automatically applied by DButton)
* Don't mix `I18n.t` and `i18n` in the same template
* Don't track props that aren't used in a template
* Correct invalid `target.value` code
* Remove unused/invalid `this.parameter`/`onChange` code
* Whitespace
* Use the new service import `inject as service` -> `service`
* Use `Object.entries()`
* Add missing i18n strings
* Fix an error in `addEnumValue` (calling `pushObject` on `undefined`)
* Use `TrackedArray`/`TrackedObject`
* Transform tool `parameters` keys (`enumValues` -> `enum_values`)
Introduces custom AI tools functionality.
1. Why it was added:
The PR adds the ability to create, manage, and use custom AI tools within the Discourse AI system. This feature allows for more flexibility and extensibility in the AI capabilities of the platform.
2. What it does:
- Introduces a new `AiTool` model for storing custom AI tools
- Adds CRUD (Create, Read, Update, Delete) operations for AI tools
- Implements a tool runner system for executing custom tool scripts
- Integrates custom tools with existing AI personas
- Provides a user interface for managing custom tools in the admin panel
3. Possible use cases:
- Creating custom tools for specific tasks or integrations (stock quotes, currency conversion etc...)
- Allowing administrators to add new functionalities to AI assistants without modifying core code
- Implementing domain-specific tools for particular communities or industries
4. Code structure:
The PR introduces several new files and modifies existing ones:
a. Models:
- `app/models/ai_tool.rb`: Defines the AiTool model
- `app/serializers/ai_custom_tool_serializer.rb`: Serializer for AI tools
b. Controllers:
- `app/controllers/discourse_ai/admin/ai_tools_controller.rb`: Handles CRUD operations for AI tools
c. Views and Components:
- New Ember.js components for tool management in the admin interface
- Updates to existing AI persona management components to support custom tools
d. Core functionality:
- `lib/ai_bot/tool_runner.rb`: Implements the custom tool execution system
- `lib/ai_bot/tools/custom.rb`: Defines the custom tool class
e. Routes and configurations:
- Updates to route configurations to include new AI tool management pages
f. Migrations:
- `db/migrate/20240618080148_create_ai_tools.rb`: Creates the ai_tools table
g. Tests:
- New test files for AI tool functionality and integration
The PR integrates the custom tools system with the existing AI persona framework, allowing personas to use both built-in and custom tools. It also includes safety measures such as timeouts and HTTP request limits to prevent misuse of custom tools.
Overall, this PR significantly enhances the flexibility and extensibility of the Discourse AI system by allowing administrators to create and manage custom AI tools tailored to their specific needs.
Co-authored-by: Martin Brennan <martin@discourse.org>
Previously, we stored request parameters like the OpenAI organization and Bedrock's access key and region as site settings. This change stores them in the `llm_models` table instead, letting us drop more settings while also becoming more flexible.
* FEATURE: LLM presets for model creation
Previous to this users needed to look up complicated settings
when setting up models.
This introduces and extensible preset system with Google/OpenAI/Anthropic
presets.
This will cover all the most common LLMs, we can always add more as
we go.
Additionally:
- Proper support for Anthropic Claude Sonnet 3.5
- Stop blurring api keys when navigating away - this made it very complex to reuse keys
Previously read tool only had access to public topics, this allows
access to all topics user has access to, if admin opts for the option
Also
- Fixes VLLM migration
- Display which llms have bot enabled
* DRAFT: Create AI Bot users dynamically and support custom LlmModels
* Get user associated to llm_model
* Track enabled bots with attribute
* Don't store bot username. Minor touches to migrate default values in settings
* Handle scenario where vLLM uses a SRV record
* Made 3.5-turbo-16k the default version so we can remove hack