Add support for chat with AI personas
- Allow enabling chat for AI personas that have an associated user
- Add new setting `allow_chat` to AI persona to enable/disable chat
- When a message is created in a DM channel with an allowed AI persona user, schedule a reply job
- AI replies to chat messages using the persona's `max_context_posts` setting to determine context
- Store tool calls and custom prompts used to generate a chat reply on the `ChatMessageCustomPrompt` table
- Add tests for AI chat replies with tools and context
At the moment unlike posts we do not carry tool calls in the context.
No @mention support yet for ai personas in channels, this is future work
A recent change meant that llm instance got cached internally, repeat calls
to inference would cache data in Endpoint object leading model to
failures.
Both Gemini and Open AI expect a clean endpoint object cause they
set data.
This amends internals to make sure llm.generate will always operate
on clean objects
This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments.
Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer.
EG:
- User: how many cars are there in europe
- Model: detailed answer about cars in europe including the term car and vehicle many times
- User: Nice, what about trains are there in the US
In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal.
Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content.
The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui.
This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation.
Key changes:
1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation.
2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt.
3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question.
4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration.
5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality.
This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
This allows you to exclude trees of categories in a simple way
It also means you can no longer exclude "just the parent" but
this is a fair compromise.
- Adds support for sd3 and sd3 turbo models - this requires new endpoints
- Adds a hack to normalize arrays in the tool calls
- Removes some leftover code
- Adds support for aspect ratio as well so you can generate wide or tall images
For quite a few weeks now, some times, when running function calls
on Anthropic we would get a "stray" - "calls" line.
This has been enormously frustrating!
I have been unable to find the source of the bug so instead decoupled
the implementation and create a very clear "function call normalizer"
This new class is extensively tested and guards against the type of
edge cases we saw pre-normalizer.
This also simplifies the implementation of "endpoint" which no longer
needs to handle all this complex logic.
- Updated AI Bot to only support Gemini 1.5 (used to support 1.0) - 1.0 was removed cause it is not appropriate for Bot usage
- Summaries and automation can now lean on Gemini 1.5 pro
- Amazon added support for Claude 3 Opus, added internal support for it on bedrock
* FIX: various RAG edge cases
- Nicer text to describe RAG, avoids the word RAG
- Do not attempt to save persona when removing uploads and it is not created
- Remove old code that avoided touching rag params on create
* FIX: Missing pause button for persona users
* Feature: allow specific users to debug ai request / response chains
This can help users easily tune RAG and figure out what is going
on with requests.
* discourse helper so it does not explode
* fix test
* simplify implementation
* FEATURE: allow tuning of RAG generation
- change chunking to be token based vs char based (which is more accurate)
- allow control over overlap / tokens per chunk and conversation snippets inserted
- UI to control new settings
* improve ui a bit
* fix various reindex issues
* reduce concurrency
* try ultra low queue ... concurrency 1 is too slow.
Just having the word JSON can confuse models when we expect them
to deal solely in XML
Instead provide an example of how string arrays should be returned
Technically the tool framework supports int arrays and more, but
our current implementation only does string arrays.
Also tune the prompt construction not to give any tips about arrays
if none exist
- Added Cohere Command models (Command, Command Light, Command R, Command R Plus) to the available model list
- Added a new site setting `ai_cohere_api_key` for configuring the Cohere API key
- Implemented a new `DiscourseAi::Completions::Endpoints::Cohere` class to handle interactions with the Cohere API, including:
- Translating request parameters to the Cohere API format
- Parsing Cohere API responses
- Supporting streaming and non-streaming completions
- Supporting "tools" which allow the model to call back to discourse to lookup additional information
- Implemented a new `DiscourseAi::Completions::Dialects::Command` class to translate between the generic Discourse AI prompt format and the Cohere Command format
- Added specs covering the new Cohere endpoint and dialect classes
- Updated `DiscourseAi::AiBot::Bot.guess_model` to map the new Cohere model to the appropriate bot user
In summary, this PR adds support for using the Cohere Command family of models with the Discourse AI plugin. It handles configuring API keys, making requests to the Cohere API, and translating between Discourse's generic prompt format and Cohere's specific format. Thorough test coverage was added for the new functionality.
BAAI/bge-m3 is an interesting model, that is multilingual and with a
context size of 8192. Even with a 16x larger context, it's only 4x slower
to compute it's embeddings on the worst case scenario.
Also includes a minor refactor of the rake task, including setting model
and concurrency levels when running the backfill task.
Open AI just released gpt-4-turbo (with vision)
This change stops using the old preview model and swaps with the
officially released gpt-4-turbo
To come is an implementation of vision.
It used to fetch it from /site.json, but /categories.json is the more
appropriate one. This one also implements pagination, so we have to do
one request per page.
* FEATURE: Add metadata support for RAG
You may include non indexed metadata in the RAG document by using
[[metadata ....]]
This information is attached to all the text below and provided to
the retriever.
This allows for RAG to operate within a rich amount of contexts
without getting lost
Also:
- re-implemented chunking algorithm so it streams
- moved indexing to background low priority queue
* Baran gem no longer required.
* tokenizers is on 4.4 ... upgrade it ...
it is close in performance to GPT 4 at a fraction of the cost,
nice to add it to the mix.
Also improves a test case to simulate streaming, I am hunting for
the "calls" word that is jumping into function calls and can't quite
find it.
This PR lets you associate uploads to an AI persona, which we'll split and generate embeddings from. When building the system prompt to get a bot reply, we'll do a similarity search followed by a re-ranking (if available). This will let us find the most relevant fragments from the body of knowledge you associated with the persona, resulting in better, more informed responses.
For now, we'll only allow plain-text files, but this will change in the future.
Commits:
* FEATURE: RAG embeddings for the AI Bot
This first commit introduces a UI where admins can upload text files, which we'll store, split into fragments,
and generate embeddings of. In a next commit, we'll use those to give the bot additional information during
conversations.
* Basic asymmetric similarity search to provide guidance in system prompt
* Fix tests and lint
* Apply reranker to fragments
* Uploads filter, css adjustments and file validations
* Add placeholder for rag fragments
* Update annotations
This pull request makes several improvements and additions to the GitHub-related tools and personas in the `discourse-ai` repository:
1. It adds the `WebBrowser` tool to the `Researcher` persona, allowing the AI to visit web pages, retrieve HTML content, extract the main content, and convert it to plain text.
2. It updates the `GithubFileContent`, `GithubPullRequestDiff`, and `GithubSearchCode` tools to handle HTTP responses more robustly (introducing size limits).
3. It refactors the `send_http_request` method in the `Tool` class to follow redirects when specified, and to read the response body in chunks to avoid memory issues with large responses. (only for WebBrowser)
4. It updates the system prompt for the `Researcher` persona to provide more detailed guidance on when to use Google search vs web browsing, and how to optimize tool usage and reduce redundant requests.
5. It adds a new `web_browser_spec.rb` file with tests for the `WebBrowser` tool, covering various scenarios like handling different HTML structures and following redirects.
This commit adds the ability to enable vision for AI personas, allowing them to understand images that are posted in the conversation.
For personas with vision enabled, any images the user has posted will be resized to be within the configured max_pixels limit, base64 encoded and included in the prompt sent to the AI provider.
The persona editor allows enabling/disabling vision and has a dropdown to select the max supported image size (low, medium, high). Vision is disabled by default.
This initial vision support has been tested and implemented with Anthropic's claude-3 models which accept images in a special format as part of the prompt.
Other integrations will need to be updated to support images.
Several specs were added to test the new functionality at the persona, prompt building and API layers.
- Gemini is omitted, pending API support for Gemini 1.5. Current Gemini bot is not performing well, adding images is unlikely to make it perform any better.
- Open AI is omitted, vision support on GPT-4 it limited in that the API has no tool support when images are enabled so we would need to full back to a different prompting technique, something that would add lots of complexity
---------
Co-authored-by: Martin Brennan <martin@discourse.org>
report runner and llm triage used different paths to figure out
underlying model name, unify so we use the same path.
fixes claude 3 based models on llm triage
Prompt was steering incorrectly into the wrong language.
New prompt attempts to be more concise and clear and provides
better guidance about size of summary and how to format it.
We were only suppressing non mentions, ones that become spans.
@sam in the test was not resolving to a mention cause the user
did not exist.
depends on: https://github.com/discourse/discourse/pull/26253 for tests to pass.
- Stop replying as bot, when human replies to another human
- Reply as correct persona when replying directly to a persona
- Fix paper cut where suppressing notifications was not doing so
This PR consolidates the implements new Anthropic Messages interface for Bedrock Claude endpoints and adds support for the new Claude 3 models (haiku, opus, sonnet).
Key changes:
- Renamed `AnthropicMessages` and `Anthropic` endpoint classes into a single `Anthropic` class (ditto for ClaudeMessages -> Claude)
- Updated `AwsBedrock` endpoints to use the new `/messages` API format for all Claude models
- Added `claude-3-haiku`, `claude-3-opus` and `claude-3-sonnet` model support in both Anthropic and AWS Bedrock endpoints
- Updated specs for the new consolidated endpoints and Claude 3 model support
This refactor removes support for old non messages API which has been deprecated by anthropic
* FEATURE: allow suppression of notifications from report generation
Previously we needed to do this by hand, unfortunately this uses up
too many tokens and is very hard to discover.
New option means that we can trivially disable notifications without
needing any prompt engineering.
* URI.parse is safer, use it
* FIX: Handle unicode on tokenizer
Our fast track code broke when strings had characters who are longer in tokens than
in UTF-8.
Admins can set `DISCOURSE_AI_STRICT_TOKEN_COUNTING: true` in app.yml to ensure token counting is strict, even if slower.
Co-authored-by: wozulong <sidle.pax_0e@icloud.com>
* FIX: don't show share conversation incorrectly
- ai_persona_name can be null vs undefined leading to button showing up where it should not
- do not allow sharing of conversations where user is sending PMs to self
* remove erroneous code
* avoid query
This allows users to share a static page of an AI conversation with
the rest of the world.
By default this feature is disabled, it is enabled by turning on
ai_bot_allow_public_sharing via site settings
Precautions are taken when sharing
1. We make a carbonite copy
2. We minimize work generating page
3. We limit to 100 interactions
4. Many security checks - including disallowing if there is a mix
of users in the PM.
* Bonus commit, large PRs like this PR did not work with github tool
large objects would destroy context
Co-authored-by: Martin Brennan <martin@discourse.org>
Adds support for "name" on functions which can be used for tool calls
For function calls we need to keep track of id/name and previously
we only supported either
Also attempts to improve sql helper
This PR adds AI semantic search to the search pop available on every page.
It depends on several new and optional settings, like per post embeddings and a reranker model, so this is an experimental endeavour.
---------
Co-authored-by: Rafael Silva <xfalcox@gmail.com>
1. Fix input fields in AI persona editor and make GitHub tool authentication optional
2. AI persona editor improvements and tool GitHub access token check
This pull request makes a few improvements:
- Adds `lang="en"` to number input fields in the AI persona editor to prevent localization issues
- Adds `step="any"` to allow fractional values for temperature and top_p settings
- Makes GitHub tool authentication contingent on `ai_bot_github_access_token` site setting being present
see: https://meta.discourse.org/t/ai-bot-personas-don-t-accept-decimals-for-temperature-top-p/298243/7
Introduces a new AI Bot persona called 'GitHub Helper' which is specialized in assisting with GitHub-related tasks and questions. It includes the following key changes:
- Implements the GitHub Helper persona class with its system prompt and available tools
- Adds three new AI Bot tools for GitHub interactions:
- github_file_content: Retrieves content of files from a GitHub repository
- github_pull_request_diff: Retrieves the diff for a GitHub pull request
- github_search_code: Searches for code in a GitHub repository
- Updates the AI Bot dialects to support the new GitHub tools
- Implements multiple function calls for standard tool dialect
Chat thread replies draft trigger the thread_created event, which we relied on
to trigger the AI generated title. Because of that we now will use the noisier
chat_message_created event, and manually check for thread and replies existence.
See https://github.com/discourse/discourse/pull/26033
This provides new support for messages API from Claude.
It is required for latest model access.
Also corrects implementation of function calls.
* Fix message interleving
* fix broken spec
* add new models to automation