When the bot is @mentioned, we need to be a lot more careful
about constructing context otherwise bot gets ultra confused.
This changes multiple things:
1. We were omitting all thread first messages (fixed)
2. Include thread title (if available) in context
3. Construct context in a clearer way separating user request from data
Both endpoints provide OpenAI-compatible servers. The only difference is that Vllm doesn't support passing tools as a separate parameter. Even if the tool param is supported, it ultimately relies on the model's ability to handle native functions, which is not the case with the models we have today.
As a part of this change, we are dropping support for StableBeluga/Llama2 models. They don't have a chat_template, meaning the new API can translate them.
These changes let us remove some of our existing dialects and are a first step in our plan to support any LLM by defining them as data-driven concepts.
I rewrote the "translate" method to use a template method and extracted the tool support strategies into its classes to simplify the code.
Finally, these changes bring support for Ollama when running in dev mode. It only works with Mistral for now, but it will change soon..
* Well, it was quite a journey but now tools have "context" which
can be critical for the stuff they generate
This entire change was so Dall E and Artist generate images in the correct context
* FIX: improve error handling around image generation
- also corrects image markdown and clarifies code
* fix spec
Add support for chat with AI personas
- Allow enabling chat for AI personas that have an associated user
- Add new setting `allow_chat` to AI persona to enable/disable chat
- When a message is created in a DM channel with an allowed AI persona user, schedule a reply job
- AI replies to chat messages using the persona's `max_context_posts` setting to determine context
- Store tool calls and custom prompts used to generate a chat reply on the `ChatMessageCustomPrompt` table
- Add tests for AI chat replies with tools and context
At the moment unlike posts we do not carry tool calls in the context.
No @mention support yet for ai personas in channels, this is future work
The initial setup done in fb0d56324f
clashed with other plugins, I found this when trying to do the same
for Gamification. This uses a better routing setup and removes the
need to define the config nav link for Settings -- that is always inserted.
Relies on https://github.com/discourse/discourse/pull/26707
A recent change meant that llm instance got cached internally, repeat calls
to inference would cache data in Endpoint object leading model to
failures.
Both Gemini and Open AI expect a clean endpoint object cause they
set data.
This amends internals to make sure llm.generate will always operate
on clean objects
This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments.
Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer.
EG:
- User: how many cars are there in europe
- Model: detailed answer about cars in europe including the term car and vehicle many times
- User: Nice, what about trains are there in the US
In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal.
Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content.
The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui.
This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation.
Key changes:
1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation.
2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt.
3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question.
4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration.
5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality.
This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
Updating the editing model's rag_uploads in the editor component broke multi-file uploading. Instead, we'll keep the uploads in the uploader and update the model when we finish.
This PR also fast-tracks the initial update so we can show feedback to the user quickly, and allows uploading MD files.
Bug reported on https://meta.discourse.org/t/discourse-ai-persona-upload-support/304049/11
This allows you to exclude trees of categories in a simple way
It also means you can no longer exclude "just the parent" but
this is a fair compromise.
- Adds support for sd3 and sd3 turbo models - this requires new endpoints
- Adds a hack to normalize arrays in the tool calls
- Removes some leftover code
- Adds support for aspect ratio as well so you can generate wide or tall images
For quite a few weeks now, some times, when running function calls
on Anthropic we would get a "stray" - "calls" line.
This has been enormously frustrating!
I have been unable to find the source of the bug so instead decoupled
the implementation and create a very clear "function call normalizer"
This new class is extensively tested and guards against the type of
edge cases we saw pre-normalizer.
This also simplifies the implementation of "endpoint" which no longer
needs to handle all this complex logic.
- Updated AI Bot to only support Gemini 1.5 (used to support 1.0) - 1.0 was removed cause it is not appropriate for Bot usage
- Summaries and automation can now lean on Gemini 1.5 pro
- Amazon added support for Claude 3 Opus, added internal support for it on bedrock
* FIX: various RAG edge cases
- Nicer text to describe RAG, avoids the word RAG
- Do not attempt to save persona when removing uploads and it is not created
- Remove old code that avoided touching rag params on create
* FIX: Missing pause button for persona users
* Feature: allow specific users to debug ai request / response chains
This can help users easily tune RAG and figure out what is going
on with requests.
* discourse helper so it does not explode
* fix test
* simplify implementation
* FEATURE: allow tuning of RAG generation
- change chunking to be token based vs char based (which is more accurate)
- allow control over overlap / tokens per chunk and conversation snippets inserted
- UI to control new settings
* improve ui a bit
* fix various reindex issues
* reduce concurrency
* try ultra low queue ... concurrency 1 is too slow.
Just having the word JSON can confuse models when we expect them
to deal solely in XML
Instead provide an example of how string arrays should be returned
Technically the tool framework supports int arrays and more, but
our current implementation only does string arrays.
Also tune the prompt construction not to give any tips about arrays
if none exist
This commit uses a new plugin modifier introduced in https://github.com/discourse/discourse/pull/26508
to mark all uploads as _not_ secure in shared PM AI conversations.
This is so images created by the AI bot (or uploaded by the user)
do not end up as broken URLs because of the security requirements
around them.
This relies on the UpdateTopicUploadSecurity job in core as well,
which is fired when an AI conversation is shared or deleted.
- Added Cohere Command models (Command, Command Light, Command R, Command R Plus) to the available model list
- Added a new site setting `ai_cohere_api_key` for configuring the Cohere API key
- Implemented a new `DiscourseAi::Completions::Endpoints::Cohere` class to handle interactions with the Cohere API, including:
- Translating request parameters to the Cohere API format
- Parsing Cohere API responses
- Supporting streaming and non-streaming completions
- Supporting "tools" which allow the model to call back to discourse to lookup additional information
- Implemented a new `DiscourseAi::Completions::Dialects::Command` class to translate between the generic Discourse AI prompt format and the Cohere Command format
- Added specs covering the new Cohere endpoint and dialect classes
- Updated `DiscourseAi::AiBot::Bot.guess_model` to map the new Cohere model to the appropriate bot user
In summary, this PR adds support for using the Cohere Command family of models with the Discourse AI plugin. It handles configuring API keys, making requests to the Cohere API, and translating between Discourse's generic prompt format and Cohere's specific format. Thorough test coverage was added for the new functionality.
BAAI/bge-m3 is an interesting model, that is multilingual and with a
context size of 8192. Even with a 16x larger context, it's only 4x slower
to compute it's embeddings on the worst case scenario.
Also includes a minor refactor of the rake task, including setting model
and concurrency levels when running the backfill task.
Open AI just released gpt-4-turbo (with vision)
This change stops using the old preview model and swaps with the
officially released gpt-4-turbo
To come is an implementation of vision.
It used to fetch it from /site.json, but /categories.json is the more
appropriate one. This one also implements pagination, so we have to do
one request per page.