* FEATURE: Backfill posts sentiment.
It adds a scheduled job to backfill posts' sentiment, similar to our existing rake task, but with two settings to control the batch size and posts' max-age.
* Make sure model_name order is consistent.
Add support for versioned artifacts with improved diff handling
* Add versioned artifacts support allowing artifacts to be updated and tracked
- New `ai_artifact_versions` table to store version history
- Support for updating artifacts through a new `UpdateArtifact` tool
- Add version-aware artifact rendering in posts
- Include change descriptions for version tracking
* Enhance artifact rendering and security
- Add support for module-type scripts and external JS dependencies
- Expand CSP to allow trusted CDN sources (unpkg, cdnjs, jsdelivr, googleapis)
- Improve JavaScript handling in artifacts
* Implement robust diff handling system (this is dormant but ready to use once LLMs catch up)
- Add new DiffUtils module for applying changes to artifacts
- Support for unified diff format with multiple hunks
- Intelligent handling of whitespace and line endings
- Comprehensive error handling for diff operations
* Update routes and UI components
- Add versioned artifact routes
- Update markdown processing for versioned artifacts
Also
- Tweaks summary prompt
- Improves upload support in custom tool to also provide urls
The description of the automatic captions dialog prompt included "Would you like to enable automatic auto captions on image uploads." I removed the second "auto" at the suggestion of translators.
- Added a new admin interface to track AI usage metrics, including tokens, features, and models.
- Introduced a new route `/admin/plugins/discourse-ai/ai-usage` and supporting API endpoint in `AiUsageController`.
- Implemented `AiUsageSerializer` for structuring AI usage data.
- Integrated CSS stylings for charts and tables under `stylesheets/modules/llms/common/usage.scss`.
- Enhanced backend with `AiApiAuditLog` model changes: added `cached_tokens` column (implemented with OpenAI for now) with relevant DB migration and indexing.
- Created `Report` module for efficient aggregation and filtering of AI usage metrics.
- Updated AI Bot title generation logic to log correctly to user vs bot
- Extended test coverage for the new tracking features, ensuring data consistency and access controls.
This commit applies further admin UI guidelines, now that they have been more
fleshed out in core, to the AI admin UI:
* Tools
* LLMs
* Personas
The changes include but are not limited to:
* Applying the table CSS classes, for desktop and mobile
* Adding a description and learn more link for each tab
* Adding an empty list placeholder with CTA using `AdminConfigAreaEmptyList`
* Replacing custom headings with `AdminPageSubheader`
* FEATURE: allow mentioning an LLM mid conversation to switch
This is a edgecase feature that allow you to start a conversation
in a PM with LLM1 and then use LLM2 to evaluation or continue
the conversation
* FEATURE: allow auto silencing of spam accounts
New rule can also allow for silencing an account automatically
This can prevent spammers from creating additional posts.
* PERF: Preload only gists when including summaries in topic list
* Add unique index on summaries and dedup existing records
* Make hot topics batch size setting hidden
* FIX: automatically bust cache for share ai assets
CDNs can be configured to strip query params in Discourse
hosting. This is generally safe, but in this case we had
no way of busting the cache using the path.
New design properly caches and properly breaks busts the
cache if asset changes so we don't need to worry about versions
* one day I will set up conditional lint on save :)
* FEATURE: Make emotion /filter ordering match the dashboard table
This change makes the /filter endpoint use the same criteria we use
in the dashboard table for emotion, so it is not confusing for users.
It means that only posts made in the period with the emotion shall be
shown in the /filter, and the order is simply a count of posts that
match the emotion in the period.
It also uses a trick to extract the filter period, and apply it to
the CTE clause that calculates post emotion count on the period, making
it a bit more efficient. Downside is that /filter filters are evaluated
from left to right, so it will only get the speed-up if the emotion
order is last. As we do this on the dashboard table, it should cover
most uses of the ordering, kicking the need for materialized views
down the road.
* Remove zero score in filter
* add table tooltip
* lint
1. Keep source in a "details" block after rendered so it does
not overwhelm users
2. Ensure artifacts are never indexed by robots
3. Cache break our CSS that changed recently
This is a significant PR that introduces AI Artifacts functionality to the discourse-ai plugin along with several other improvements. Here are the key changes:
1. AI Artifacts System:
- Adds a new `AiArtifact` model and database migration
- Allows creation of web artifacts with HTML, CSS, and JavaScript content
- Introduces security settings (`strict`, `lax`, `disabled`) for controlling artifact execution
- Implements artifact rendering in iframes with sandbox protection
- New `CreateArtifact` tool for AI to generate interactive content
2. Tool System Improvements:
- Adds support for partial tool calls, allowing incremental updates during generation
- Better handling of tool call states and progress tracking
- Improved XML tool processing with CDATA support
- Fixes for tool parameter handling and duplicate invocations
3. LLM Provider Updates:
- Updates for Anthropic Claude models with correct token limits
- Adds support for native/XML tool modes in Gemini integration
- Adds new model configurations including Llama 3.1 models
- Improvements to streaming response handling
4. UI Enhancements:
- New artifact viewer component with expand/collapse functionality
- Security controls for artifact execution (click-to-run in strict mode)
- Improved dialog and response handling
- Better error management for tool execution
5. Security Improvements:
- Sandbox controls for artifact execution
- Public/private artifact sharing controls
- Security settings to control artifact behavior
- CSP and frame-options handling for artifacts
6. Technical Improvements:
- Better post streaming implementation
- Improved error handling in completions
- Better memory management for partial tool calls
- Enhanced testing coverage
7. Configuration:
- New site settings for artifact security
- Extended LLM model configurations
- Additional tool configuration options
This PR significantly enhances the plugin's capabilities for generating and displaying interactive content while maintaining security and providing flexible configuration options for administrators.
This re-implements tool support in DiscourseAi::Completions::Llm #generate
Previously tool support was always returned via XML and it would be the responsibility of the caller to parse XML
New implementation has the endpoints return ToolCall objects.
Additionally this simplifies the Llm endpoint interface and gives it more clarity. Llms must implement
decode, decode_chunk (for streaming)
It is the implementers responsibility to figure out how to decode chunks, base no longer implements. To make this easy we ship a flexible json decoder which is easy to wire up.
Also (new)
Better debugging for PMs, we now have a next / previous button to see all the Llm messages associated with a PM
Token accounting is fixed for vllm (we were not correctly counting tokens)
This change introduces a job to summarize topics and cache the results automatically. We provide a setting to control how many topics we'll backfill per hour and what the topic's minimum word count is to qualify.
We'll prioritize topics without summary over outdated ones.
The new `/admin/plugins/discourse-ai/ai-personas/stream-reply.json` was added.
This endpoint streams data direct from a persona and can be used
to access a persona from remote systems leaving a paper trail in
PMs about the conversation that happened
This endpoint is only accessible to admins.
---------
Co-authored-by: Gabriel Grubba <70247653+Grubba27@users.noreply.github.com>
Co-authored-by: Keegan George <kgeorge13@gmail.com>
This changeset contains 4 fixes:
1. We were allowing running tests on unsaved tools,
this is problematic cause uploads are not yet associated or indexed
leading to confusing results. We now only show the test button when
tool is saved.
2. We were not properly scoping rag document fragements, this
meant that personas and ai tools could get results from other
unrelated tools, just to be filtered out later
3. index.search showed options as "optional" but implementation
required the second option
4. When testing tools searching through document fragments was
not working at all cause we did not properly load the tool
* FIX: Llm selector / forced tools / search tool
This fixes a few issues:
1. When search was not finding any semantic results we would break the tool
2. Gemin / Anthropic models did not implement forced tools previously despite it being an API option
3. Mechanics around displaying llm selector were not right. If you disabled LLM selector server side persona PM did not work correctly.
4. Disabling native tools for anthropic model moved out of a site setting. This deliberately does not migrate cause this feature is really rare to need now, people who had it set probably did not need it.
5. Updates anthropic model names to latest release
* linting
* fix a couple of tests I missed
* clean up conditional
A new feature_context json column was added to ai_api_audit_logs
This allows us to store rich json like context on any LLM request
made.
This new field now stores automation id and name.
Additionally allows llm_triage to specify maximum number of tokens
This means that you can limit the cost of llm triage by scanning only
first N tokens of a post.
This changeset:
1. Corrects some issues with "force_default_llm" not applying
2. Expands the LLM list page to show LLM usage
3. Clarifies better what "enabling a bot" on an llm means (you get it in the selector)