- Allow users to supply top_p and temperature values, which means people can fine tune randomness
- Fix bad localization string
- Fix bad remapping of max tokens in gemini
- Add support for top_p as a general param to llms
- Amend system prompt so persona stops treating a user as an adversary
* UX: Validations to Llm-backed features (except AI Bot)
This change is part of an ongoing effort to prevent enabling a broken feature due to lack of configuration. We also want to explicit which provider we are going to use. For example, Claude models are available through AWS Bedrock and Anthropic, but the configuration differs.
Validations are:
* You must choose a model before enabling the feature.
* You must turn off the feature before setting the model to blank.
* You must configure each model settings before being able to select it.
* Add provider name to summarization options
* vLLM can technically support same models as HF
* Check we can talk to the selected model
* Check for Bedrock instead of anthropic as a site could have both creds setup
* FEATURE: add support for new OpenAI embedding models
This adds support for just released text_embedding_3_small and large
Note, we have not yet implemented truncation support which is a
new API feature. (triggered using dimensions)
* Tiny side fix, recalc bots when ai is enabled or disabled
* FIX: downsample to 2000 items per vector which is a pgvector limitation
Account properly for function calls, don't stream through <details> blocks
- Rush cooked content back to client
- Wait longer (up to 60 seconds) before giving up on streaming
- Clean up message bus channels so we don't have leftover data
- Make ai streamer much more reusable and much easier to read
- If buffer grows quickly, rush update so you are not artificially waiting
- Refine prompt interface
- Fix lost system message when prompt gets long
This allows admins to configure services with multiple backends using DNS SRV records. This PR also adds support for shared secret auth via headers for TEI and vLLM endpoints, so they are inline with the other ones.
Previous to this change it was very hard to tell if completion was
stuck or not.
This introduces a "dot" that follows the completion and starts
flashing after 5 seconds.
It also corrects the syntax around tool support, which was wrong.
Gemini doesn't want us to include messages about previous tool invocations, so I had to shuffle around some code to send the response it generated from those invocations instead. For this, I created the "multi_turn" context, which bundles all the context involved in the interaction.
* DEV: AI bot migration to the Llm pattern.
We added tool and conversation context support to the Llm service in discourse-ai#366, meaning we met all the conditions to migrate this module.
This PR migrates to the new pattern, meaning adding a new bot now requires minimal effort as long as the service supports it. On top of this, we introduce the concept of a "Playground" to separate the PM-specific bits from the completion, allowing us to use the bot in other contexts like chat in the future. Commands are called tools, and we simplified all the placeholder logic to perform updates in a single place, making the flow more one-wayish.
* Followup fixes based on testing
* Cleanup unused inference code
* FIX: text-based tools could be in the middle of a sentence
* GPT-4-turbo support
* Use new LLM API
* FEATURE: allow easy sharing of bot conversations
* Lean on new core API i
* Added system spec for copy functionality
* Update assets/javascripts/initializers/ai-bot-replies.js
Co-authored-by: Alan Guo Xiang Tan <gxtan1990@gmail.com>
* discourse later insted of setTimeout
* Update spec/system/ai_bot/share_spec.rb
Co-authored-by: Alan Guo Xiang Tan <gxtan1990@gmail.com>
* feedback from review
just check the whole payload
* remove uneeded code
* fix spec
---------
Co-authored-by: Alan Guo Xiang Tan <gxtan1990@gmail.com>
Introduce a Discourse Automation based periodical report. Depends on Discourse Automation.
Report works best with very large context language models such as GPT-4-Turbo and Claude 2.
- Introduces final_insts to generic llm format, for claude to work best it is better to guide the last assistant message (we should add this to other spots as well)
- Adds GPT-4 turbo support to generic llm interface
We were limiting to 20 results unconditionally cause we had to make
sure search always fit in an 8k context window.
Models such as GPT 3.5 Turbo (16k) and GPT 4 Turbo / Claude 2.1 (over 150k)
allow us to return a lot more results.
This means we have a much richer understanding cause context is far
larger.
This also allows a persona to tweak this number, in some cases admin
may want to be conservative and save on tokens by limiting results
This also tweaks the `limit` param which GPT-4 liked to set to tell
model only to use it when it needs to (and describes default behavior)
Keep in mind:
- GPT-4 is only going to be fully released next year - so this hardcodes preview model for now
- Fixes streaming bugs which became a big problem with GPT-4 turbo
- Adds Azure endpoing for turbo as well
Co-authored-by: Martin Brennan <martin@discourse.org>
Personas now support providing options for commands.
This PR introduces a single option "base_query" for the SearchCommand. When supplied all searches the persona will perform will also include the pre-supplied filter.
This can allow personas to search a subset of the forum (such as documentation)
This system is extensible we can add options to any command trivially.
* FEATURE: User sentiment on profile summary page
This introduces a new user stat in a user profile summary page.
It will show either neutral/positive/negative according to the dominant
sentiment in the user last interactions.
The user-stat widget is only rendered for staff.
Co-authored-by: Keegan George <kgeorge13@gmail.com>