* FEATURE: Add support for StableBeluga and Upstage Llama2 instruct
This means we support all models in the top3 of the Open LLM Leaderboard
Since some of those models have RoPE, we now have a setting so you can
customize the token limit depending which model you use.
TopicQuery already provides a lot of safeguards and options for filtering topic, and enforcing permissions. It makes sense to rely on it as other plugins like discourse-assign do.
As a bonus, we now have access to the current_user while serializing these topics, so users will see things like unread posts count just like we do for the lists.
* DEV: Pin plugin for v3.1
Changes to the topic recommendations list added by discourse/discourse#22896 were reverted from stable.
* Update .discourse-compatibility
Co-authored-by: David Taylor <david@taylorhq.com>
---------
Co-authored-by: David Taylor <david@taylorhq.com>
Claude 1 costs the same and is less good than Claude 2. Make use of Claude
2 in all spots ...
This also fixes streaming so it uses the far more efficient streaming protocol.
A missing parameter on the `parseInt` function was causing unexpected UI behavior for the AI helper since it turned an allowed group ID into NaN. We should always use base10 when parsing these IDs.
* FIX: Show related topics when scrolling long topics
* Update assets/javascripts/initializers/related-topics.js
Co-authored-by: Roman Rizzi <roman@discourse.org>
---------
Co-authored-by: Roman Rizzi <roman@discourse.org>
The tokenizer was truncating and padding to 128 tokens, and we try append
new post content until we hit 384 tokens. This was causing the tokenizer
to accept all posts in a topic, wasting CPU and memory.
Single and multi-chunk summaries end using different prompts for the last summary. This change detects when the summarized content fits in a single chunk and uses a slightly different prompt, which leads to more consistent summary formats.
This PR also moves the chunk-splitting step to the `FoldContent` strategy as preparation for implementing streamed summaries.
* FEATURE: Embeddings to main db
This commit moves our embeddings store from an external configurable PostgreSQL
instance back into the main database. This is done to simplify the setup.
There is a migration that will try to import the external embeddings into
the main DB if it is configured and there are rows.
It removes support from embeddings models that aren't all_mpnet_base_v2 or OpenAI
text_embedding_ada_002. However it will now be easier to add new models.
It also now takes into account:
- topic title
- topic category
- topic tags
- replies (as much as the model allows)
We introduce an interface so we can eventually support multiple strategies
for handling long topics.
This PR severely damages the semantic search performance, but this is a
temporary until we can get adapt HyDE to make semantic search use the same
embeddings we have for semantic related with good performance.
Here we also have some ground work to add post level embeddings, but this
will be added in a future PR.
Please note that this PR will also block Discourse from booting / updating if
this plugin is installed and the pgvector extension isn't available on the
PostgreSQL instance Discourse uses.
* DEV: Better strategies for summarization
The strategy responsibility needs to be "Given a collection of texts, I know how to summarize them most efficiently, using the minimum amount of requests and maximizing token usage".
There are different token limits for each model, so it all boils down to two different strategies:
Fold all these texts into a single one, doing the summarization in chunks, and then build a summary from those.
Build it by combining texts in a single prompt, and truncate it according to your token limits.
While the latter is less than ideal, we need it for "bart-large-cnn-samsum" and "flan-t5-base-samsum", both with low limits. The rest will rely on folding.
* Expose summarized chunks to users
Reduce maximum replies to 2500 tokens and make them even for both GPT-3.5
and 4
Account for 400+ tokens in function definitions (this was unaccounted for)
* FEATURE: add ai_bot_enabled_chat commands and tune search
This allows admins to disable/enable GPT command integrations.
Also hones search results which were looping cause the result did not denote
the failure properly (it lost context)
* include more context for google command
include more context for time command
* type
The new site settings:
ai_openai_gpt35_url : distribution for GPT 16k
ai_openai_gpt4_url: distribution for GPT 4
ai_openai_embeddings_url: distribution for ada2
If untouched we will simply use OpenAI endpoints.
Azure requires 1 URL per model, OpenAI allows a single URL to serve multiple models. Hence the new settings.
```
prompt << build_message(bot_user.username, reply)
```
Would store a "cooked" prompt which is invalid, instead just store the raw
values which are later passed to build_message
Additionally:
1. Disable summary command which needs honing
2. Stop storing decorations (searched for X) in prompt which leads to straying
3. Ship username directly to model, avoiding "user: content" in prompts. This
was causing GPT to stray
Given latest GPT 3.5 16k which is both better steered and supports functions
we can now support rich bot integration.
Clunky system message based steering is removed and instead we use the
function framework provided by Open AI
* DEV: Remove the summarization feature
Instead, we'll register summarization implementations for OpenAI, Anthropic, and Discourse AI using the API defined in discourse/discourse#21813.
Core and chat will implement features on top of these implementations instead of this plugin extending them.
* Register instances that contain the model, requiring less site settings
Previous to this change we were chaining stuff too late and would execute
commands serially leading to very unexpected results
This corrects this and allows us to run stuff like:
> Search google 3/4 times on various permutations of
QUERY and answer this question.
We limit at 5 commands to ensure there are not pathological user cases
where you lean on the LLM to flood us with results.
For the time being smart commands only work consistently on GPT 4.
Avoid using any smart commands on the earlier models.
Additionally adds better error handling to Claude which sometimes streams
partial json and slightly tunes the search command.
blog.start_gpt_chat -> was on my blog
This also slightly tunes the search prompt to support filtering by oldest
and try a tiny bit harder to guide GPT 3.5 which is a bit of a losing battle
Co-authored-by: Krzysztof Kotlarek <kotlarek.krzysztof@gmail.com>
The rails_failover middleware will intercept all `PG::ConnectionBad` errors and put the cluster into readonly mode. It does not have any handling for multiple databases. Therefore, an issue with the embeddings database was taking the whole cluster into readonly.
This commit fixes the issue by rescuing `PG::Error` from all AI database accesses, and re-raises errors with a different class. It also adds a spec to ensure that an embeddings database outage does not affect the functionality of the topics/show route.
Co-authored-by: David Taylor <david@taylorhq.com>
* FIX: guide GPT 3.5 better
This limits search results to 10 cause we were blowing the whole token
budget on search results, additionally it includes a quick exchange at
the start of a session to try and guide GPT 3.5 to follow instructions
Sadly GPT 3.5 drifts off very quickly but this does improve stuff a bit.
It also attempts to correct some issues with anthropic, though it still is
surprisingly hard to ground
* add status:public, this is a bit of a hack but ensures that we can search
for any filter provided
* fix specs
- We only support searching public topics - make it clear
- Stop using bug/feature, cause is poisons system - these may not exist
- Add after: and before: which are very handy for bounding search results
* FEATURE: introduce a more efficient formatter
Previous formatting style was space inefficient given JSON consumes lots
of tokens, the new format is now used consistently across commands
Also fixes
- search limited to 10
- search breaking on limit: non existent directive
* Slight improvement to summarizer
Stop blowing up context with custom prompts
* ensure we include the guiding message
* correct spec
* langchain style summarizer ...
much more accurate (albeit more expensive)
* lint