* DEV: Remove old code now that features rely on LlmModels.
* Hide old settings and migrate persona llm overrides
* Remove shadowing special URL + seeding code. Use srv:// prefix instead.
This allows summary to use the new LLM models and migrates of API key based model selection
Claude 3.5 etc... all work now.
---------
Co-authored-by: Roman Rizzi <rizziromanalejandro@gmail.com>
Introduces custom AI tools functionality.
1. Why it was added:
The PR adds the ability to create, manage, and use custom AI tools within the Discourse AI system. This feature allows for more flexibility and extensibility in the AI capabilities of the platform.
2. What it does:
- Introduces a new `AiTool` model for storing custom AI tools
- Adds CRUD (Create, Read, Update, Delete) operations for AI tools
- Implements a tool runner system for executing custom tool scripts
- Integrates custom tools with existing AI personas
- Provides a user interface for managing custom tools in the admin panel
3. Possible use cases:
- Creating custom tools for specific tasks or integrations (stock quotes, currency conversion etc...)
- Allowing administrators to add new functionalities to AI assistants without modifying core code
- Implementing domain-specific tools for particular communities or industries
4. Code structure:
The PR introduces several new files and modifies existing ones:
a. Models:
- `app/models/ai_tool.rb`: Defines the AiTool model
- `app/serializers/ai_custom_tool_serializer.rb`: Serializer for AI tools
b. Controllers:
- `app/controllers/discourse_ai/admin/ai_tools_controller.rb`: Handles CRUD operations for AI tools
c. Views and Components:
- New Ember.js components for tool management in the admin interface
- Updates to existing AI persona management components to support custom tools
d. Core functionality:
- `lib/ai_bot/tool_runner.rb`: Implements the custom tool execution system
- `lib/ai_bot/tools/custom.rb`: Defines the custom tool class
e. Routes and configurations:
- Updates to route configurations to include new AI tool management pages
f. Migrations:
- `db/migrate/20240618080148_create_ai_tools.rb`: Creates the ai_tools table
g. Tests:
- New test files for AI tool functionality and integration
The PR integrates the custom tools system with the existing AI persona framework, allowing personas to use both built-in and custom tools. It also includes safety measures such as timeouts and HTTP request limits to prevent misuse of custom tools.
Overall, this PR significantly enhances the flexibility and extensibility of the Discourse AI system by allowing administrators to create and manage custom AI tools tailored to their specific needs.
Co-authored-by: Martin Brennan <martin@discourse.org>
We no longer support the "provider:model" format in the "ai_helper_model" and
"ai_embeddings_semantic_search_hyde_model" settings. We'll migrate existing
values and work with our new data-driven LLM configs from now on.
Previously read tool only had access to public topics, this allows
access to all topics user has access to, if admin opts for the option
Also
- Fixes VLLM migration
- Display which llms have bot enabled
* DRAFT: Create AI Bot users dynamically and support custom LlmModels
* Get user associated to llm_model
* Track enabled bots with attribute
* Don't store bot username. Minor touches to migrate default values in settings
* Handle scenario where vLLM uses a SRV record
* Made 3.5-turbo-16k the default version so we can remove hack
- Display filtered search correctly, so it is not confusing
- When XML stripping, if a chunk was `<` it would crash
- SQL Helper improved to be better aware of Data Explorer
This is a rather huge refactor with 1 new feature (tool details can
be suppressed)
Previously we use the name "Command" to describe "Tools", this unifies
all the internal language and simplifies the code.
We also amended the persona UI to use less DToggles which aligns
with our design guidelines.
Co-authored-by: Martin Brennan <martin@discourse.org>
1. New tool to easily find files (and default branch) in a Github repo
2. Improved read tool with clearer params and larger context
* limit can totally mess up the richness semantic search adds, so include the results unconditionally.
This is similar to code interpreter by ChatGPT, except that it uses
JavaScript as the execution engine.
Safeguards were added to ensure memory is constrained and evaluation
times out.
When lazy load categories is enabled, the list of categories does not
have to fetched from the "site.json" endpoint because it is already
returned by "search.json".
This commit reverts commits 5056502 and 3e54697 because iterating over
all pages of categories is not really necessary.
This optional feature allows search to be performed in the context
of the user that executed it.
By default we do not allow this behavior cause it means llm gets
access to potentially secure data.
When the bot is @mentioned, we need to be a lot more careful
about constructing context otherwise bot gets ultra confused.
This changes multiple things:
1. We were omitting all thread first messages (fixed)
2. Include thread title (if available) in context
3. Construct context in a clearer way separating user request from data
* Well, it was quite a journey but now tools have "context" which
can be critical for the stuff they generate
This entire change was so Dall E and Artist generate images in the correct context
* FIX: improve error handling around image generation
- also corrects image markdown and clarifies code
* fix spec
Add support for chat with AI personas
- Allow enabling chat for AI personas that have an associated user
- Add new setting `allow_chat` to AI persona to enable/disable chat
- When a message is created in a DM channel with an allowed AI persona user, schedule a reply job
- AI replies to chat messages using the persona's `max_context_posts` setting to determine context
- Store tool calls and custom prompts used to generate a chat reply on the `ChatMessageCustomPrompt` table
- Add tests for AI chat replies with tools and context
At the moment unlike posts we do not carry tool calls in the context.
No @mention support yet for ai personas in channels, this is future work
This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments.
Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer.
EG:
- User: how many cars are there in europe
- Model: detailed answer about cars in europe including the term car and vehicle many times
- User: Nice, what about trains are there in the US
In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal.
Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content.
The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui.
This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation.
Key changes:
1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation.
2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt.
3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question.
4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration.
5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality.
This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
This allows you to exclude trees of categories in a simple way
It also means you can no longer exclude "just the parent" but
this is a fair compromise.
* FIX: various RAG edge cases
- Nicer text to describe RAG, avoids the word RAG
- Do not attempt to save persona when removing uploads and it is not created
- Remove old code that avoided touching rag params on create
* FIX: Missing pause button for persona users
* Feature: allow specific users to debug ai request / response chains
This can help users easily tune RAG and figure out what is going
on with requests.
* discourse helper so it does not explode
* fix test
* simplify implementation
* FEATURE: allow tuning of RAG generation
- change chunking to be token based vs char based (which is more accurate)
- allow control over overlap / tokens per chunk and conversation snippets inserted
- UI to control new settings
* improve ui a bit
* fix various reindex issues
* reduce concurrency
* try ultra low queue ... concurrency 1 is too slow.
It used to fetch it from /site.json, but /categories.json is the more
appropriate one. This one also implements pagination, so we have to do
one request per page.
This PR lets you associate uploads to an AI persona, which we'll split and generate embeddings from. When building the system prompt to get a bot reply, we'll do a similarity search followed by a re-ranking (if available). This will let us find the most relevant fragments from the body of knowledge you associated with the persona, resulting in better, more informed responses.
For now, we'll only allow plain-text files, but this will change in the future.
Commits:
* FEATURE: RAG embeddings for the AI Bot
This first commit introduces a UI where admins can upload text files, which we'll store, split into fragments,
and generate embeddings of. In a next commit, we'll use those to give the bot additional information during
conversations.
* Basic asymmetric similarity search to provide guidance in system prompt
* Fix tests and lint
* Apply reranker to fragments
* Uploads filter, css adjustments and file validations
* Add placeholder for rag fragments
* Update annotations
This pull request makes several improvements and additions to the GitHub-related tools and personas in the `discourse-ai` repository:
1. It adds the `WebBrowser` tool to the `Researcher` persona, allowing the AI to visit web pages, retrieve HTML content, extract the main content, and convert it to plain text.
2. It updates the `GithubFileContent`, `GithubPullRequestDiff`, and `GithubSearchCode` tools to handle HTTP responses more robustly (introducing size limits).
3. It refactors the `send_http_request` method in the `Tool` class to follow redirects when specified, and to read the response body in chunks to avoid memory issues with large responses. (only for WebBrowser)
4. It updates the system prompt for the `Researcher` persona to provide more detailed guidance on when to use Google search vs web browsing, and how to optimize tool usage and reduce redundant requests.
5. It adds a new `web_browser_spec.rb` file with tests for the `WebBrowser` tool, covering various scenarios like handling different HTML structures and following redirects.
This commit adds the ability to enable vision for AI personas, allowing them to understand images that are posted in the conversation.
For personas with vision enabled, any images the user has posted will be resized to be within the configured max_pixels limit, base64 encoded and included in the prompt sent to the AI provider.
The persona editor allows enabling/disabling vision and has a dropdown to select the max supported image size (low, medium, high). Vision is disabled by default.
This initial vision support has been tested and implemented with Anthropic's claude-3 models which accept images in a special format as part of the prompt.
Other integrations will need to be updated to support images.
Several specs were added to test the new functionality at the persona, prompt building and API layers.
- Gemini is omitted, pending API support for Gemini 1.5. Current Gemini bot is not performing well, adding images is unlikely to make it perform any better.
- Open AI is omitted, vision support on GPT-4 it limited in that the API has no tool support when images are enabled so we would need to full back to a different prompting technique, something that would add lots of complexity
---------
Co-authored-by: Martin Brennan <martin@discourse.org>
We were only suppressing non mentions, ones that become spans.
@sam in the test was not resolving to a mention cause the user
did not exist.
depends on: https://github.com/discourse/discourse/pull/26253 for tests to pass.
- Stop replying as bot, when human replies to another human
- Reply as correct persona when replying directly to a persona
- Fix paper cut where suppressing notifications was not doing so
* FEATURE: allow suppression of notifications from report generation
Previously we needed to do this by hand, unfortunately this uses up
too many tokens and is very hard to discover.
New option means that we can trivially disable notifications without
needing any prompt engineering.
* URI.parse is safer, use it