Previous to this change we could flag, but there was no way
to hide content and treat the flag as spam.
We had the option to hide topics, but this is not desirable for
a spam reply.
New option allows triage to hide a post if it is a reply, if the
post happens to be the first post on the topic, the topic will
be hidden.
This PR updates the rate limits for AI helper so that image caption follows a specific rate limit of 20 requests per minute. This should help when uploading multiple files that need to be captioned. This PR also updates the UI so that it shows toast message with the extracted error message instead of having a blocking `popupAjaxError` error dialog.
---------
Co-authored-by: Rafael dos Santos Silva <xfalcox@gmail.com>
Co-authored-by: Penar Musaraj <pmusaraj@gmail.com>
This allows our users to add the Ollama provider and use it to serve our AI bot (completion/dialect).
In this PR, we introduce:
DiscourseAi::Completions::Dialects::Ollama which would help us translate by utilizing Completions::Endpoint::Ollama
Correct extract_completion_from and partials_from in Endpoints::Ollama
Also
Add tests for Endpoints::Ollama
Introduce ollama_model fabricator
This allows custom tools access to uploads and sophisticated searches using embedding.
It introduces:
- A shared front end for listing and uploading files (shared with personas)
- Backend implementation of index.search function within a custom tool.
Custom tools now may search through uploaded files
function invoke(params) {
return index.search(params.query)
}
This means that RAG implementers now may preload tools with knowledge and have high fidelity over
the search.
The search function support
specifying max results
specifying a subset of files to search (from uploads)
Also
- Improved documentation for tools (when creating a tool a preamble explains all the functionality)
- uploads were a bit finicky, fixed an edge case where the UI would not show them as updated
Restructures LLM config page so it is far clearer.
Also corrects bugs around adding LLMs and having LLMs not editable post addition
---------
Co-authored-by: Sam Saffron <sam.saffron@gmail.com>
The `DiffModal` is triggered after selecting an option in the composer helper menu. After selecting an option, we should close the composer helper menu and only show the diff modal. On mobile, there was an edge-case where `this.args.close()` for was causing the closing of both the `DiffModal` and the `AiComposerHelperMenu`. This PR resolves that by ensuring the menu is closed _first_ asynchronously, followed by opening the relevant modal.
Polymorphic RAG means that we will be able to access RAG fragments both from AiPersona and AiCustomTool
In turn this gives us support for richer RAG implementations.
Previously we had moved the AI helper from the options menu to a selection menu that appears when selecting text in the composer. This had the benefit of making the AI helper a more discoverable feature. Now that some time has passed and the AI helper is more recognized, we will be moving it back to the composer toolbar.
This is better because:
- It consistent with other behavior and ways of accessing tools in the composer
- It has an improved mobile experience
- It reduces unnecessary code and keeps things easier to migrate when we have composer V2.
- It allows for easily triggering AI helper for all content by clicking the button instead of having to select everything.
Embedding search is rate limited due to potentially expensive
hyde operation (which require LLM access).
Embedding generally is very cheap compared to it. (usually 100x cheaper)
This raises the limit to 100 per minute for embedding searches,
while keeping the old 4 per minute for HyDE powered search.
Previously we waited 1 minute before automatically titling PMs
The new change introduces adding a title immediately after the the
llm replies
Prompt was also modified to include the LLM reply in title suggestion.
This helps situation like:
user: tell me a joke
llm: a very funy joke about horses
Then the title would be "A Funny Horse Joke"
Specs already covered some auto title logic, amended to also
catch the new message bus message we have been sending.
* FIX: we were never reindexing old content
Embedding backfill contains logic for searching for old content
change and then backfilling.
Unfortunately it was excluding all topics that had embedding
unconditionally, leading to no backfill ever happening.
This change adds a test and ensures we backfill.
* over select results, this ensures we will be more likely to find
ai results when filtered
This improves the site setting search so it performs a somewhat
fuzzy match.
Previously it did not handle seperators such as "space" and a
term such as "min_post_length" would not find "min_first_post_length"
A more liberal search algorithm makes it easier to the AI to
navigate settings.
* Minor fix, {{and parameter.enum parameter.enum.length}} is non
obviously broken.
If parameter.enum is a tracked array it will return the object
cause embers and helper implementation.
This corrects an issue where enum keeps on selecting itself by
mistake.
This allows callers of embedding based search to bypass hyde.
Hyde will expand the search term using an LLM, but if an LLM is
performing the search we can skip this expansion.
It also introduced some tests for the controller which we did not have
Previously there was too much work proofreading text, new implementation
provides a single shortcut and easy way of proofreading text.
Co-authored-by: Martin Brennan <martin@discourse.org>
* FEATURE: LLM Triage support for systemless models.
This change adds support for OSS models without support for system messages. LlmTriage's system message field is no longer mandatory. We now send the post contents in a separate user message.
* Models using Ollama can also disable system prompts
New `ai_pm_summarization_allowed_groups` can be used to allow
visibility of the summarization feature on PMs.
This can be useful on forums where a lot of communication happens
inside PMs.
When navigating between topic we were not correctly resetting
internal state for summarization. This leads to a situation where
incorrect summaries can be displayed to users and wrong summaries
can be displayed.
Additionally our controller for grabbing summaries was always
streaming results via message bus, which could be delayed when
sidekiq is overloaded. We now will return the cached summary
right away if it is available direct from REST endpoint.
Creating a new model, either manually or from presets, doesn't initialize the `provider_params` object, meaning their custom params won't persist.
Additionally, this change adds some validations for Bedrock params, which are mandatory, and a clear message when a completion fails because we cannot build the URL.
- Validate fields to reduce the chance of breaking features by a misconfigured model.
- Fixed a bug where the URL might get deleted during an update.
- Display a warning when a model is currently in use.
* FIX: Add tool support to open ai compatible dialect and vllm
Automatic tools are in progress in vllm see: https://github.com/vllm-project/vllm/pull/5649
Even when they are supported, initial support will be uneven, only some models have native tool support
notably mistral which has some special tokens for tool support.
After the above PR lands in vllm we will still need to swap to
XML based tools on models without native tool support.
* fix specs
* DEV: Remove old code now that features rely on LlmModels.
* Hide old settings and migrate persona llm overrides
* Remove shadowing special URL + seeding code. Use srv:// prefix instead.
Using RAG fragments can lead to considerably big system messages, which becomes problematic when models have a smaller context window.
Before this change, we only look at the rest of the conversation to make sure we don't surpass the limit, which could lead to two unwanted scenarios when having large system messages:
All other messages are excluded due to size.
The system message already exceeds the limit.
As a result, I'm putting a hard-limit of 60% of available tokens. We don't want to aggresively truncate because if rag fragments are included, the system message contains a lot of context to improve the model response, but we also want to make room for the recent messages in the conversation.