- Introduce new support for GPT4o (automation / bot / summary / helper)
- Properly account for token counts on OpenAI models
- Track feature that was used when generating AI completions
- Remove custom llm support for summarization as we need better interfaces to control registration and de-registration
Prompt was steering incorrectly into the wrong language.
New prompt attempts to be more concise and clear and provides
better guidance about size of summary and how to format it.
* UX: Validations to Llm-backed features (except AI Bot)
This change is part of an ongoing effort to prevent enabling a broken feature due to lack of configuration. We also want to explicit which provider we are going to use. For example, Claude models are available through AWS Bedrock and Anthropic, but the configuration differs.
Validations are:
* You must choose a model before enabling the feature.
* You must turn off the feature before setting the model to blank.
* You must configure each model settings before being able to select it.
* Add provider name to summarization options
* vLLM can technically support same models as HF
* Check we can talk to the selected model
* Check for Bedrock instead of anthropic as a site could have both creds setup
* REFACTOR: Represent generic prompts with an Object.
* Adds a bit more validation for clarity
* Rewrite bot title prompt and fix quirk handling
---------
Co-authored-by: Sam Saffron <sam.saffron@gmail.com>
This allows admins to configure services with multiple backends using DNS SRV records. This PR also adds support for shared secret auth via headers for TEI and vLLM endpoints, so they are inline with the other ones.
* FIX: AI helper not working correctly with mixtral
This PR introduces a new function on the generic llm called #generate
This will replace the implementation of completion!
#generate introduces a new way to pass temperature, max_tokens and stop_sequences
Then LLM implementers need to implement #normalize_model_params to
ensure the generic names match the LLM specific endpoint
This also adds temperature and stop_sequences to completion_prompts
this allows for much more robust completion prompts
* port everything over to #generate
* Fix translation
- On anthropic this no longer throws random "This is your translation:"
- On mixtral this actually works
* fix markdown table generation as well
Previous to this change we relied on explicit loading for a files in Discourse AI.
This had a few downsides:
- Busywork whenever you add a file (an extra require relative)
- We were not keeping to conventions internally ... some places were OpenAI others are OpenAi
- Autoloader did not work which lead to lots of full application broken reloads when developing.
This moves all of DiscourseAI into a Zeitwerk compatible structure.
It also leaves some minimal amount of manual loading (automation - which is loading into an existing namespace that may or may not be there)
To avoid needing /lib/discourse_ai/... we mount a namespace thus we are able to keep /lib pointed at ::DiscourseAi
Various files were renamed to get around zeitwerk rules and minimize usage of custom inflections
Though we can get custom inflections to work it is not worth it, will require a Discourse core patch which means we create a hard dependency.