Commit Graph

90 Commits

Author SHA1 Message Date
Sam 5cbc9190eb
FEATURE: RAG search within tools (#802)
This allows custom tools access to uploads and sophisticated searches using embedding.

It introduces:

 - A shared front end for listing and uploading files (shared with personas)
 -  Backend implementation of index.search function within a custom tool.

Custom tools now may search through uploaded files

function invoke(params) {
   return index.search(params.query)
}

This means that RAG implementers now may preload tools with knowledge and have high fidelity over
the search.

The search function support

    specifying max results
    specifying a subset of files to search (from uploads)

Also

 - Improved documentation for tools (when creating a tool a preamble explains all the functionality)
  - uploads were a bit finicky, fixed an edge case where the UI would not show them as updated
2024-09-30 17:27:50 +10:00
Sam 03eccbe392
FEATURE: Make tool support polymorphic (#798)
Polymorphic RAG means that we will be able to access RAG fragments both from AiPersona and AiCustomTool

In turn this gives us support for richer RAG implementations.
2024-09-16 08:17:17 +10:00
Keegan George f72ab12761
DEV: Clearly separate post/composer helper settings (#747) 2024-08-12 15:40:23 -07:00
Rafael dos Santos Silva 1686a8a683
DEV: Move to single table per embeddings type (#561)
Also move us to halfvecs for speed and disk usage gains
2024-08-08 11:55:20 -03:00
Roman Rizzi 20efc9285e
FIX: Correctly save provider-specific params for new models. (#744)
Creating a new model, either manually or from presets, doesn't initialize the `provider_params` object, meaning their custom params won't persist.

Additionally, this change adds some validations for Bedrock params, which are mandatory, and a clear message when a completion fails because we cannot build the URL.
2024-08-07 16:08:56 -03:00
Roman Rizzi bed044448c
DEV: Remove old code now that features rely on LlmModels. (#729)
* DEV: Remove old code now that features rely on LlmModels.

* Hide old settings and migrate persona llm overrides

* Remove shadowing special URL + seeding code. Use srv:// prefix instead.
2024-07-30 13:44:57 -03:00
Natalie Tay 7cd7f71857
DEV: Promote historical post-deploy migrations (#728) 2024-07-30 01:44:57 +08:00
Rafael dos Santos Silva 665637fbad
FIX: Properly fix ai_summaries table sequence (#727)
* FIX: Properly fix ai_summaries table sequence

Previous attempt at 3815360 could fail due to a race introduced in 1b0ba91 where summaries are migrated to core in a post_migrate erroneously.
2024-07-26 14:45:01 -03:00
Roman Rizzi 5c196bca89
FEATURE: Track if a model can do vision in the llm_models table (#725)
* FEATURE: Track if a model can do vision in the llm_models table

* Data migration
2024-07-24 16:29:47 -03:00
Martin Brennan 5c1ab85583
DEV: More topic title prompt tweaks (#712)
Followup 8d4a67fbe2

The prompt worked better, but it took the instructions
about never using lowercase a little too literally,
it wasn't using it for things like LLM or Discourse,
also it was almost always framing the title as questions
so now I asked it for a mix of questions and statements
because that's less ambiguous.
2024-07-11 10:14:53 +10:00
Martin Brennan 8d4a67fbe2
DEV: Tweak topic title generator prompt (#710)
Changes the title generator prompt to avoid clickbait-y
titles and also try to avoid AI's favourite title format,
which is "Some Thing: Other Thing"

Leaving the chat thread title generator for now, that's
not as important, the bizarre titles add to the experience there.
2024-07-10 14:31:59 +10:00
Roman Rizzi 5cb91217bd
FIX: Flaky SRV-backed model seeding. (#708)
* Seeding the SRV-backed model should happen inside an initializer.
* Keep the model up to date when the hidden setting changes.
* Use the correct Mixtral model name and fix previous data migration.
* URL validation should trigger only when we attempt to update it.
2024-07-08 18:47:10 -03:00
Sam 38153608f8
FIX: repair id sequence identity on summary table (#701)
1. Repairs the identity on the summary table, we migrated data without resetting it.
2. Adds an index into ai_summary table to match expected retrieval pattern
2024-07-04 12:23:46 +10:00
Sam 1320eed9b2
FEATURE: move summary to use llm_model (#699)
This allows summary to use the new LLM models and migrates of API key based model selection

Claude 3.5 etc... all work now. 

---------

Co-authored-by: Roman Rizzi <rizziromanalejandro@gmail.com>
2024-07-04 10:48:18 +10:00
Keegan George 1b0ba9197c
DEV: Add summarization logic from core (#658) 2024-07-02 08:51:59 -07:00
Sam b863ddc94b
FEATURE: custom user defined tools (#677)
Introduces custom AI tools functionality. 

1. Why it was added:
   The PR adds the ability to create, manage, and use custom AI tools within the Discourse AI system. This feature allows for more flexibility and extensibility in the AI capabilities of the platform.

2. What it does:
   - Introduces a new `AiTool` model for storing custom AI tools
   - Adds CRUD (Create, Read, Update, Delete) operations for AI tools
   - Implements a tool runner system for executing custom tool scripts
   - Integrates custom tools with existing AI personas
   - Provides a user interface for managing custom tools in the admin panel

3. Possible use cases:
   - Creating custom tools for specific tasks or integrations (stock quotes, currency conversion etc...)
   - Allowing administrators to add new functionalities to AI assistants without modifying core code
   - Implementing domain-specific tools for particular communities or industries

4. Code structure:
   The PR introduces several new files and modifies existing ones:

   a. Models:
      - `app/models/ai_tool.rb`: Defines the AiTool model
      - `app/serializers/ai_custom_tool_serializer.rb`: Serializer for AI tools

   b. Controllers:
      - `app/controllers/discourse_ai/admin/ai_tools_controller.rb`: Handles CRUD operations for AI tools

   c. Views and Components:
      - New Ember.js components for tool management in the admin interface
      - Updates to existing AI persona management components to support custom tools 

   d. Core functionality:
      - `lib/ai_bot/tool_runner.rb`: Implements the custom tool execution system
      - `lib/ai_bot/tools/custom.rb`: Defines the custom tool class

   e. Routes and configurations:
      - Updates to route configurations to include new AI tool management pages

   f. Migrations:
      - `db/migrate/20240618080148_create_ai_tools.rb`: Creates the ai_tools table

   g. Tests:
      - New test files for AI tool functionality and integration

The PR integrates the custom tools system with the existing AI persona framework, allowing personas to use both built-in and custom tools. It also includes safety measures such as timeouts and HTTP request limits to prevent misuse of custom tools.

Overall, this PR significantly enhances the flexibility and extensibility of the Discourse AI system by allowing administrators to create and manage custom AI tools tailored to their specific needs.

Co-authored-by: Martin Brennan <martin@discourse.org>
2024-06-27 17:27:40 +10:00
Loïc Guitaut e26c5986f2 DEV: Use Rails 7.0 instead of 7.1 in post-migrations 2024-06-26 18:41:38 +02:00
Loïc Guitaut 6f5873b072 DEV: Use Rails 7.0 instead of 7.1 in migrations 2024-06-26 18:32:11 +02:00
Roman Rizzi f622e2644f
FEATURE: Store provider-specific parameters. (#686)
Previously, we stored request parameters like the OpenAI organization and Bedrock's access key and region as site settings. This change stores them in the `llm_models` table instead, letting us drop more settings while also becoming more flexible.
2024-06-25 08:26:30 +10:00
Roman Rizzi 558574fa87
DEV: Use LlmModels as options in automation rules (#676) 2024-06-21 08:07:17 +10:00
Roman Rizzi 8849caf136
DEV: Transition "Select model" settings to only use LlmModels (#675)
We no longer support the "provider:model" format in the "ai_helper_model" and
"ai_embeddings_semantic_search_hyde_model" settings. We'll migrate existing
values and work with our new data-driven LLM configs from now on.
2024-06-19 18:01:35 -03:00
Sam 0d6d9a6ef5
FEATURE: allow access to private topics if tool permits (#673)
Previously read tool only had access to public topics, this allows
access to all topics user has access to, if admin opts for the option
Also

- Fixes VLLM migration
- Display which llms have bot enabled
2024-06-19 15:49:36 +10:00
Roman Rizzi 8d5f901a67
DEV: Rewire AI bot internals to use LlmModel (#638)
* DRAFT: Create AI Bot users dynamically and support custom LlmModels

* Get user associated to llm_model

* Track enabled bots with attribute

* Don't store bot username. Minor touches to migrate default values in settings

* Handle scenario where vLLM uses a SRV record

* Made 3.5-turbo-16k the default version so we can remove hack
2024-06-18 14:32:14 -03:00
Sam 5abf80cb4e
FIX: do not mark column read only so certain deployments work (#663)
In some case we may be deploying migrations, seeding and then
running post migrations, we need this to work so we give up
on this small window of protection
2024-06-11 21:32:49 +10:00
Sam 52a7dd2a4b
FEATURE: optional tool detail blocks (#662)
This is a rather huge refactor with 1 new feature (tool details can
be suppressed)

Previously we use the name "Command" to describe "Tools", this unifies
all the internal language and simplifies the code.

We also amended the persona UI to use less DToggles which aligns
with our design guidelines.

Co-authored-by: Martin Brennan <martin@discourse.org>
2024-06-11 18:14:14 +10:00
Loïc Guitaut dd4e305ff7
DEV: Update rubocop-discourse to version 3.8.0 (#641) 2024-05-28 11:15:42 +02:00
Keegan George a1c649965f
FEATURE: Auto image captions (#637) 2024-05-27 10:49:24 -07:00
Sam baf88e7cfc
FEATURE: improve logging by including llm name (#640)
Log the language model name when logging api requests
2024-05-27 16:46:01 +10:00
Roman Rizzi 1d786fbaaf
FEATURE: Set endpoint credentials directly from LlmModel. (#625)
* FEATURE: Set endpoint credentials directly from LlmModel.

Drop Llama2Tokenizer since we no longer use it.

* Allow http for custom LLMs

---------

Co-authored-by: Rafael Silva <xfalcox@gmail.com>
2024-05-16 09:50:22 -03:00
Sam 8eee6893d6
FEATURE: GPT4o support and better auditing (#618)
- Introduce new support for GPT4o (automation / bot / summary / helper)
- Properly account for token counts on OpenAI models
- Track feature that was used when generating AI completions
- Remove custom llm support for summarization as we need better interfaces to control registration and de-registration
2024-05-14 13:28:46 +10:00
Roman Rizzi 62fc7d6ed0
FEATURE: Configurable LLMs. (#606)
This PR introduces the concept of "LlmModel" as a new way to quickly add new LLM models without making any code changes. We are releasing this first version and will add incremental improvements, so expect changes.

The AI Bot can't fully take advantage of this feature as users are hard-coded. We'll fix this in a separate PR.s
2024-05-13 12:46:42 -03:00
Sam e4b326c711
FEATURE: support Chat with AI Persona via a DM (#488)
Add support for chat with AI personas

- Allow enabling chat for AI personas that have an associated user
- Add new setting `allow_chat` to AI persona to enable/disable chat
- When a message is created in a DM channel with an allowed AI persona user, schedule a reply job
- AI replies to chat messages using the persona's `max_context_posts` setting to determine context
- Store tool calls and custom prompts used to generate a chat reply on the `ChatMessageCustomPrompt` table
- Add tests for AI chat replies with tools and context

At the moment unlike posts we do not carry tool calls in the context.

No @mention support yet for ai personas in channels, this is future work
2024-05-06 09:49:02 +10:00
Sam 32b3004ce9
FEATURE: Add Question Consolidator for robust Upload support in Personas (#596)
This commit introduces a new feature for AI Personas called the "Question Consolidator LLM". The purpose of the Question Consolidator is to consolidate a user's latest question into a self-contained, context-rich question before querying the vector database for relevant fragments. This helps improve the quality and relevance of the retrieved fragments.

Previous to this change we used the last 10 interactions, this is not ideal cause the RAG would "lock on" to an answer. 

EG:

- User: how many cars are there in europe
- Model: detailed answer about cars in europe including the term car and vehicle many times
- User: Nice, what about trains are there in the US

In the above example "trains" and "US" becomes very low signal given there are pages and pages talking about cars and europe. This mean retrieval is sub optimal. 

Instead, we pass the history to the "question consolidator", it would simply consolidate the question to "How many trains are there in the United States", which would make it fare easier for the vector db to find relevant content. 

The llm used for question consolidator can often be less powerful than the model you are talking to, we recommend using lighter weight and fast models cause the task is very simple. This is configurable from the persona ui.

This PR also removes support for {uploads} placeholder, this is too complicated to get right and we want freedom to shift RAG implementation. 

Key changes:

1. Added a new `question_consolidator_llm` column to the `ai_personas` table to store the LLM model used for question consolidation.

2. Implemented the `QuestionConsolidator` module which handles the logic for consolidating the user's latest question. It extracts the relevant user and model messages from the conversation history, truncates them if needed to fit within the token limit, and generates a consolidated question prompt.

3. Updated the `Persona` class to use the Question Consolidator LLM (if configured) when crafting the RAG fragments prompt. It passes the conversation context to the consolidator to generate a self-contained question.

4. Added UI elements in the AI Persona editor to allow selecting the Question Consolidator LLM. Also made some UI tweaks to conditionally show/hide certain options based on persona configuration.

5. Wrote unit tests for the QuestionConsolidator module and updated existing persona tests to cover the new functionality.

This feature enables AI Personas to better understand the context and intent behind a user's question by consolidating the conversation history into a single, focused question. This can lead to more relevant and accurate responses from the AI assistant.
2024-04-30 13:49:21 +10:00
Sam f6ac5cd0a8
FEATURE: allow tuning of RAG generation (#565)
* FEATURE: allow tuning of RAG generation

- change chunking to be token based vs char based (which is more accurate)
- allow control over overlap / tokens per chunk and conversation snippets inserted
- UI to control new settings

* improve ui a bit

* fix various reindex issues

* reduce concurrency

* try ultra low queue ... concurrency 1 is too slow.
2024-04-12 10:32:46 -03:00
Rafael dos Santos Silva eb93b21769
FEATURE: Add BGE-M3 embeddings support (#569)
BAAI/bge-m3 is an interesting model, that is multilingual and with a
context size of 8192. Even with a 16x larger context, it's only 4x slower
to compute it's embeddings on the worst case scenario.

Also includes a minor refactor of the rake task, including setting model
and concurrency levels when running the backfill task.
2024-04-10 17:24:01 -03:00
Sam 830cc26075
FEATURE: Add metadata support for RAG (#553)
* FEATURE: Add metadata support for RAG

You may include non indexed metadata in the RAG document by using

[[metadata ....]]

This information is attached to all the text below and provided to
the retriever.

This allows for RAG to operate within a rich amount of contexts
without getting lost

Also:

- re-implemented chunking algorithm so it streams
- moved indexing to background low priority queue

* Baran gem no longer required.

* tokenizers is on 4.4 ... upgrade it ...
2024-04-04 11:02:16 -03:00
Roman Rizzi 1f1c94e5c6
FEATURE: AI Bot RAG support. (#537)
This PR lets you associate uploads to an AI persona, which we'll split and generate embeddings from. When building the system prompt to get a bot reply, we'll do a similarity search followed by a re-ranking (if available). This will let us find the most relevant fragments from the body of knowledge you associated with the persona, resulting in better, more informed responses.

For now, we'll only allow plain-text files, but this will change in the future.

Commits:

* FEATURE: RAG embeddings for the AI Bot

This first commit introduces a UI where admins can upload text files, which we'll store, split into fragments,
and generate embeddings of. In a next commit, we'll use those to give the bot additional information during
conversations.

* Basic asymmetric similarity search to provide guidance in system prompt

* Fix tests and lint

* Apply reranker to fragments

* Uploads filter, css adjustments and file validations

* Add placeholder for rag fragments

* Update annotations
2024-04-01 13:43:34 -03:00
Sam 61e4c56e1a
FEATURE: Add vision support to AI personas (Claude 3) (#546)
This commit adds the ability to enable vision for AI personas, allowing them to understand images that are posted in the conversation.

For personas with vision enabled, any images the user has posted will be resized to be within the configured max_pixels limit, base64 encoded and included in the prompt sent to the AI provider.

The persona editor allows enabling/disabling vision and has a dropdown to select the max supported image size (low, medium, high). Vision is disabled by default.

This initial vision support has been tested and implemented with Anthropic's claude-3 models which accept images in a special format as part of the prompt.

Other integrations will need to be updated to support images.

Several specs were added to test the new functionality at the persona, prompt building and API layers.

 - Gemini is omitted, pending API support for Gemini 1.5. Current Gemini bot is not performing well, adding images is unlikely to make it perform any better.

 - Open AI is omitted, vision support on GPT-4 it limited in that the API has no tool support when images are enabled so we would need to full back to a different prompting technique, something that would add lots of complexity


---------

Co-authored-by: Martin Brennan <martin@discourse.org>
2024-03-27 14:30:11 +11:00
Sam a03bc6ddec
FEATURE: Share conversations with AI via a URL (#521)
This allows users to share a static page of an AI conversation with
the rest of the world.

By default this feature is disabled, it is enabled by turning on
ai_bot_allow_public_sharing via site settings

Precautions are taken when sharing

1. We make a carbonite copy
2. We minimize work generating page
3. We limit to 100 interactions
4. Many security checks - including disallowing if there is a mix
of users in the PM.

* Bonus commit, large PRs like this PR did not work with github tool
large objects would destroy context


Co-authored-by: Martin Brennan <martin@discourse.org>
2024-03-12 16:51:41 +11:00
Sam d036f3fb8e
FEATURE: AI helper support in non English languages (#489)
* FEATURE: AI helper support in non English languages

This attempts some prompt engineering to coerce AI helper to answer
in the appropriate language.

Note mileage will vary, in testing GPT-4 produces the best results
GPT-3.5 can return OKish results.

* Extend non english support for GPT-4V image caption

* Update db/fixtures/ai_helper/603_completion_prompts.rb

---------

Co-authored-by: Rafael Silva <xfalcox@gmail.com>
2024-02-27 16:31:51 -03:00
Sam 3a8d95f6b2
FEATURE: mentionable personas and random picker tool, context limits (#466)
1. Personas are now optionally mentionable, meaning that you can mention them either from public topics or PMs
       - Mentioning from PMs helps "switch" persona mid conversation, meaning if you want to look up sites setting you can invoke the site setting bot, or if you want to generate an image you can invoke dall e
        - Mentioning outside of PMs allows you to inject a bot reply in a topic trivially
     - We also add the support for max_context_posts this allow you to limit the amount of context you feed in, which can help control costs

2. Add support for a "random picker" tool that can be used to pick random numbers 

3. Clean up routing ai_personas -> ai-personas

4. Add Max Context Posts so users can control how much history a persona can consume (this is important for mentionable personas) 

Co-authored-by: Martin Brennan <martin@discourse.org>
2024-02-15 16:37:59 +11:00
Roman Rizzi 0ff5c0c2c4
FIX: Explicit check for empty string in compat migration (#463) 2024-02-07 14:51:51 -03:00
Sam a3c827efcc
FEATURE: allow personas to supply top_p and temperature params (#459)
* FEATURE: allow personas to supply top_p and temperature params

Code assistance generally are more focused at a lower temperature
This amends it so SQL Helper runs at 0.2 temperature vs the more
common default across LLMs of 1.0.

Reduced temperature leads to more focused, concise and predictable
answers for the SQL Helper

* fix tests

* This is not perfect, but far better than what we do today

Instead of fishing for

1. Draft sequence
2. Draft body

We skip (2), this means the composer "only" needs 1 http request to
open, we also want to eliminate (1) but it is a bit of a trickier
core change, may figure out how to pull it off (defer it to first draft save)

Value of bot drafts < value of opening bot conversations really fast
2024-02-03 07:09:34 +11:00
Roman Rizzi 0634b85a81
UX: Validations to LLM-backed features (except AI Bot) (#436)
* UX: Validations to Llm-backed features (except AI Bot)

This change is part of an ongoing effort to prevent enabling a broken feature due to lack of configuration. We also want to explicit which provider we are going to use. For example, Claude models are available through AWS Bedrock and Anthropic, but the configuration differs.

Validations are:

* You must choose a model before enabling the feature.
* You must turn off the feature before setting the model to blank.
* You must configure each model settings before being able to select it.

* Add provider name to summarization options

* vLLM can technically support same models as HF

* Check we can talk to the selected model

* Check for Bedrock instead of anthropic as a site could have both creds setup
2024-01-29 16:04:25 -03:00
Sam b2b01185f2
FEATURE: add support for new OpenAI embedding models (#445)
* FEATURE: add support for new OpenAI embedding models

This adds support for just released text_embedding_3_small and large

Note, we have not yet implemented truncation support which is a
new API feature. (triggered using dimensions)

* Tiny side fix, recalc bots when ai is enabled or disabled

* FIX: downsample to 2000 items per vector which is a pgvector limitation
2024-01-29 13:24:30 -03:00
Jarek Radosz 5802cd1a0c
DEV: Fix various typos (#434) 2024-01-19 12:51:26 +01:00
Roman Rizzi f9d7d7f5f0
DEV: AI bot migration to the Llm pattern. (#343)
* DEV: AI bot migration to the Llm pattern.

We added tool and conversation context support to the Llm service in discourse-ai#366, meaning we met all the conditions to migrate this module.

This PR migrates to the new pattern, meaning adding a new bot now requires minimal effort as long as the service supports it. On top of this, we introduce the concept of a "Playground" to separate the PM-specific bits from the completion, allowing us to use the bot in other contexts like chat in the future. Commands are called tools, and we simplified all the placeholder logic to perform updates in a single place, making the flow more one-wayish.

* Followup fixes based on testing

* Cleanup unused inference code

* FIX: text-based tools could be in the middle of a sentence

* GPT-4-turbo support

* Use new LLM API
2024-01-04 10:44:07 -03:00
Sam 03fc94684b
FIX: AI helper not working correctly with mixtral (#399)
* FIX: AI helper not working correctly with mixtral

This PR introduces a new function on the generic llm called #generate

This will replace the implementation of completion!

#generate introduces a new way to pass temperature, max_tokens and stop_sequences

Then LLM implementers need to implement #normalize_model_params to
ensure the generic names match the LLM specific endpoint

This also adds temperature and stop_sequences to completion_prompts
this allows for much more robust completion prompts

* port everything over to #generate

* Fix translation

- On anthropic this no longer throws random "This is your translation:"
- On mixtral this actually works

* fix markdown table generation as well
2024-01-04 09:53:47 -03:00
Rafael dos Santos Silva 140359c2ef
FEATURE: Per post embeddings (#387) 2023-12-29 12:28:45 -03:00
Rafael dos Santos Silva 1287ef4428
FEATURE: Support for Gemini Embeddings (#382) 2023-12-28 10:28:01 -03:00