Followup 2636efcd1b,
whenever ruby code was changed locally this would break
module loading, giving an "uninitialized constant
DiscourseAi::Embeddings::EntryPoint::SemanticRelated" error.
* FEATURE: HyDE-powered semantic search.
It relies on the new outlet added on discourse/discourse#23390 to display semantic search results in an unobtrusive way.
We'll use a HyDE-backed approach for semantic search, which consists on generating an hypothetical document from a given keywords, which gets transformed into a vector and used in a asymmetric similarity topic search.
This PR also reorganizes the internals to have less moving parts, maintaining one hierarchy of DAOish classes for vector-related operations like transformations and querying.
Completions and vectors created by HyDE will remain cached on Redis for now, but we could later use Postgres instead.
* Missing translation and rate limiting
---------
Co-authored-by: Roman Rizzi <rizziromanalejandro@gmail.com>
TopicQuery already provides a lot of safeguards and options for filtering topic, and enforcing permissions. It makes sense to rely on it as other plugins like discourse-assign do.
As a bonus, we now have access to the current_user while serializing these topics, so users will see things like unread posts count just like we do for the lists.
* FEATURE: Embeddings to main db
This commit moves our embeddings store from an external configurable PostgreSQL
instance back into the main database. This is done to simplify the setup.
There is a migration that will try to import the external embeddings into
the main DB if it is configured and there are rows.
It removes support from embeddings models that aren't all_mpnet_base_v2 or OpenAI
text_embedding_ada_002. However it will now be easier to add new models.
It also now takes into account:
- topic title
- topic category
- topic tags
- replies (as much as the model allows)
We introduce an interface so we can eventually support multiple strategies
for handling long topics.
This PR severely damages the semantic search performance, but this is a
temporary until we can get adapt HyDE to make semantic search use the same
embeddings we have for semantic related with good performance.
Here we also have some ground work to add post level embeddings, but this
will be added in a future PR.
Please note that this PR will also block Discourse from booting / updating if
this plugin is installed and the pgvector extension isn't available on the
PostgreSQL instance Discourse uses.
The rails_failover middleware will intercept all `PG::ConnectionBad` errors and put the cluster into readonly mode. It does not have any handling for multiple databases. Therefore, an issue with the embeddings database was taking the whole cluster into readonly.
This commit fixes the issue by rescuing `PG::Error` from all AI database accesses, and re-raises errors with a different class. It also adds a spec to ensure that an embeddings database outage does not affect the functionality of the topics/show route.
Co-authored-by: David Taylor <david@taylorhq.com>
Depends on discourse/discourse#20915
Hooks to the full-page-search component using an experimental API and performs an assymetric similarity search using our embeddings database.
Also:
- Normalizes behavior between logged in and anon,
we only show related topics in the related topic section
- Renames "suggested" to "related" given this only exists in related section
- Adds a spec section to ensure anon does not regress
- Adds `ai_embeddings_semantic_related_topics` to limit related topics
Renamed settings:
ai_embeddings_semantic_suggested_model -> ai_embeddings_semantic_related_model
ai_embeddings_semantic_suggested_topics_enabled -> ai_embeddings_semantic_related_topics_enabled
Plugins is still in an experimental phase and not much is overidden hence
avoiding adding site setting migrations.
Co-authored-by: Krzysztof Kotlarek <kotlarek.krzysztof@gmail.com>
Allows related topics to show up for logged on users
- Introduces a new "Related Topics" block above suggested when related topics exist
- Renames `ai_embeddings_semantic_suggested_topics_anons_enabled` -> `ai_embeddings_semantic_suggested_topics_enabled` (given it is only deployed on 1 site not bothering with a migration)
- Adds an integration test to ensure data arrives correctly on the client